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ABSTRACT 
 

A recently identified phospholipid translocase, Atp10c, may be involved in the 

modulation of glucose and lipid metabolism in mouse adipocytes.  Aminophospholipid 

translocases have previously been associated with cell signaling and intracellular protein 

trafficking.  In this study, the role of Atp10c in the insulin signaling pathway and 

adipogenesis was investigated using the murine 3T3-L1 cell line.   

Atp10c mRNA is highly expressed in undifferentiated cells and 2-fold down-

regulated during adipogenesis.  Interestingly, Western blotting showed a band for 

ATP10C protein at 70 kDa, a lower molecular weight than expected; ATP10C expression 

increased during differentiation.  Possible reasons for these discrepancies will be 

discussed.   

Since PPARgamma is considered to be the master regulator of adipogenesis and 

controls the expression of adipocyte genes, the effect of PPARgamma agonists on Atp10c 

expression was examined.  The PPARgamma agonists and anti-diabetic drugs MCC555 

and troglitazone both promoted adipogenesis and consequently reduced Atp10c 

expression by 5-fold and 3-fold, respectively.  When used in combination with the 

PPARgamma antagonist GW9662, treatment rescued some of the decrease in Atp10c due 

to MCC555 or troglitazone alone.  The pattern of Atp10c expression is shown to be 

opposite to that of PPARgamma.   

Additionally, the correlation between effectors of glucose and lipid metabolism 

and Atp10c was investigated.  Treatment of 3T3-L1 adipocytes with insulin and 

dexamethasone showed significantly increased expression of Atp10c; treatment with the 

β-adrenergic factor isoproterenol slightly decreased expression.  This suggests 
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transcriptional control of Atp10c by hormonal factors, but not β-adrenergic factors, 

during differentiation. 

To further explore the function of Atp10c in lipid metabolism, ATP10C silencing 

through transient transfection of 3T3-L1 cells was first optimized to ultimately allow the 

assessment of changes in proteins related to obesity and diabetes.  An 84% and 77% 

knockdown of Atp10c gene expression in preadipocytes and adipocytes, respectively, was 

achieved.  To elucidate a potential role for Atp10c/ATP10C in the insulin signaling 

pathway, glucose uptake was investigated.  Following Atp10c silencing in 3T3-L1 

adipocytes, glucose uptake was significantly increased at both 24 and 48 hours.   

Based on the results presented herein, the Atp10c gene and ATP10C protein have 

an important role in the insulin signaling pathway and may be involved in adipogenesis. 
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CHAPTER 1.  INTRODUCTION 

Obesity and diabetes are extremely prevalent in today’s society, with the numbers 

continuing to rise each year [1-3].  With no recent research to indicate that these numbers 

are going to decline in the future, obesity and diabetes remain a major public health 

concern.  New approaches must be undertaken to examine the correlation between the 

two in order to elucidate unknown players in metabolic pathways related to obesity and 

diabetes.         

 The novel type IV subfamily of P-type ATPases are putative aminophospholipid 

translocases that have been associated with human disorders of intramembranous 

transport [4, 5].  Studies in yeast have also shown that these flippases are important in 

protein trafficking in the exocytic and endocytic pathways [6, 7].  Using positional 

cloning and genomic sequencing strategies, the type IV P-type ATPase Atp10c has been 

cloned to mouse chromosome 7 [8].  Heterozygous mice inheriting a maternal deletion of 

the Atp10c gene exhibit typical hallmarks of insulin resistance syndrome including 

obesity, hyperinsulinemia, and insulin resistance [9] and represent a novel genetic model 

of diet-induced obesity and T2DM.   

The precise biological role of these flippases in intracellular signaling and protein 

trafficking are poorly understood, although there is a consensus on the physiological 

function.  The hypothesis of this project is that there is an association between type 4 

ATPase mediated phospholipid translocase activities and cell signaling and intracellular 

protein trafficking.  To investigate the biological role of Atp10c/ATP10C in the process 

of adipogenesis and the insulin signaling pathway, the Swiss murine 3T3-L1 cell line was 

used as an in vitro model [10].  RT-PCR and Western blotting experimental techniques 
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were employed to monitor gene and protein expression.  Following a basic 

characterization of Atp10c/ATP10C, the effect of PPARγ agonists and effectors of 

glucose and lipid metabolism on Atp10c expression was examined.  Lastly, glucose 

uptake was measured in adipocytes where Atp10c/ATP10C was knocked down with 

siRNA in order to elucidate the possibility that Atp10c/ATP10C is involved in the insulin 

signaling pathway.   
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CHAPTER 2.  LITERATURE REVIEW 

Obesity and Type 2 Diabetes Mellitus (T2DM) 

Obesity is a major public health concern that continues to affect more individuals 

each year [1-3, 11-13].  Between 1980 and 2002, the prevalence of obesity doubled in 

adults and the prevalence of overweight children and adolescents tripled [3, 14, 15].  The 

most recent data from the 2003-2004 National Health and Nutrition Examination Survey 

(NHANES) demonstrate that the number of overweight children and adolescents and 

obese men has increased significantly from 1999 to 2004 in the United States [13].  

Although there was no overall increase among women, the prevalence of obesity 

remained constant at 33.2%.  Similar rising trends are being observed throughout the 

world [3, 16-19].   

Obesity is a major risk factor for a number of common disorders, including non-

insulin-dependent type 2 diabetes mellitus (T2DM) [20-22], atherosclerosis [23, 24], and 

non-alcoholic fatty liver disease [25, 26].  T2DM is characterized by insulin resistance in 

the muscle, fat, and liver, combined with a decreased ability of pancreatic β cells to 

properly respond to elevated glucose levels.  Increases in both obesity and diabetes 

among adults in the United States continue in both sexes, all ages, all races, all 

educational levels, and all smoking levels [2].  The prevalence of diabetes is also on the 

rise throughout the world, with the projection that 366 million people will have diabetes 

by 2030 [27].   

There has been no recent research to indicate that these numbers are declining, 

leaving the high levels of obesity and T2DM as a major public health concern.  Based on 

these increasing statistics, there is a dire need for new approaches to examine the 
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correlation between obesity and T2DM, to understand what causes these diseases, and to 

elucidate unknown players in metabolic pathways related to obesity and T2DM.  An 

important link between obesity and T2DM is insulin resistance, the etiology of which is 

complex in humans, with both genetic predisposition and environmental factors, 

including nutritional and/or hormonal factors, playing an important role [28-31].  

However, research searching for genes related to obesity and T2DM in humans has two 

major pitfalls.  First, the genetic influence on these diseases is based on multiple, 

polymorphic single genes that each interact with other genes and may be exposed to 

specific environmental factors.  Second, if research focuses on the relation between a 

single gene and obesity or T2DM while failing to control for other involved genes and 

environmental exposures that have not been identified, then both experimental and 

observational studies become difficult to interpret.  Because these factors are difficult to 

control in human subjects, polygenic diseases can be more easily studied in animal 

models and then translated into human homologs and phenotypes.               

 

Animal models of obesity and T2DM 

Animal models have been used in research to investigate everything from drug 

testing [32] to Huntington’s disease [33] to cancer [34] to obesity [35] to diabetes [36].  

One of the common animal models used to study obesity and T2DM is the mouse model 

[28, 35, 37-42], which can include spontaneous or artificially generated single-gene loss-

of-function mutation models [35]. 
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Spontaneous single-gene loss-of-function mutation mouse model 

 Spontaneous mutational events in large breeding establishments can lead to 

genetic defects that have major loss-of-function effects in subsequent offspring.  

However, the time between discovery of the defect and subsequent genetic and 

physiological characterization may be delayed.  For example, the ob/ob mouse was 

discovered in 1950 when a spontaneous mutation led to obese mice [43], but 

characterization of the gene did not reveal that the defect was a single base pair deletion 

resulting in a premature stop codon for the leptin gene, which is highly expressed in 

adipocytes, until 1994 [44].   

 Other spontaneous mutations have resulted in the discovery of Ay/Ay mice, which 

have a deletion of the lethal yellow (Ay) gene and result in obese, diabetic mice with an 

all-yellow coat [45].  The db/db mouse represents a model for diabetic dyslipidemia, with 

a deletion of the diabetes (db) gene [46].  Additional spontaneous single-gene mutations 

in fat and tubby (tub) have also been identified, leading to obese mice that exhibit 

hyperglycemia, hyperinsulinemia, and elevated levels of total and HDL cholesterol [47, 

48].       

 Although there are at least 10 single-gene loss-of-function mutations leading to 

obesity that have been discovered and genetically characterized, genetic screens in 

humans have indicated that very few individuals actually have a loss-of-function 

mutation in any of these genes [49, 50].  The importance of these genes lies in further 

understanding how the energy regulation system works and identifying other key players 

of adipogenesis and the insulin signaling pathway [35].     
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Artificially generated single-gene loss-of-function mutation mouse model 

 After witnessing spontaneous single-gene loss-of-function mutations, scientists 

began to accelerate the process by increasing the mutation rate artificially through 

exposure to mutagenic chemicals or radiation [8, 51].  These models can be used to look 

at energy regulation as well as other aspects of animal function [35].  But this approach 

can be costly in order to phenotype the mice, considering the mouse genome consists of 

close to 40,000 genes.  In addition, the effect of the gene deletion still must be visible in 

the progeny.  On the other hand, after these models are generated, they can be maintained 

and used for further research purposes.  One such mouse model is described in a later 

section.   

Transgenic mouse model 

 Single-gene mutations can also be artificially generated as a transgenic model, 

where the mouse is genetically engineered to contain a transgene to cause overexpression 

of, mutation in, or silencing of a target gene [42].  The first transgenic mouse was created 

by Brinster et al in 1982 where the promoter region of the mouse metallothionein-I gene 

fused to the herpesvirus thymidine kinase gene was injected into fertilized mouse eggs, 

which were then transferred to a surrogate [52].   

Transgenic mice can be generated not only to overexpress a certain gene [53-55], 

but also to completely silence a gene.  These “knockout” mice are created by complete 

ablation of the target gene in all tissues to yield an associated phenotype [35].  For 

example, silencing estrogen receptor-α in male and female mice leads to increased white 

adipose tissue [56] whereas silencing the cannabinoid receptor CB1 leads to leanness and 

resistance to diet-induced obesity [57].    
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These models can also sometimes lead to unexpected phenotypes, such as the axl 

model that was originally generated to investigate the role of the tyrosine kinase receptor 

axl in leukemia.  Augustine et al found that constitutively expressing the axl gene 

actually resulted in mice with T2DM [58].   

Although expensive to generate, transgenic mouse models can be extremely 

useful in scientific research to provide clues concerning the normal function of a specific 

gene and how it may cause or contribute to a certain disease.   

A novel polygenic mouse model  

Mice containing radiation-induced chromosomal deletions on mouse chromosome 

7 (MMU 7) located at the pink-eyed dilution (p) locus were generated and maintained at 

Oak Ridge National Laboratory [59, 60].  The p-locus-associated obesity-1 (plo 1) region 

of MMU 7 is associated with T2DM and maps to a region of quantitative trait loci 

affecting body fat [8].  Using genetic mapping and phenotypic analyses, two distally 

extending heterozygous deletions, p23DFiOD and p30PUb, were identified that encompass the 

p locus on MMU 7 and cause diet-induced obesity and T2DM [59-61].  Heterozygous 

mice inheriting either of the two p deletions maternally that were fed a high-fat diet 

showed a significantly higher body weight, adiposity index, and plasma insulin, leptin, 

and triglyceride concentrations compared to heterozygotes inheriting the deletion 

paternally (Figure 1) [8]. 

Intraperitoneal glucose and insulin tolerance tests showed altered glucose 

tolerance and insulin resistance after consumption of a high-fat diet for 4, 8, and 12 

weeks.  A 30% decrease in insulin-stimulated glucose uptake in white adipose tissue was 

also seen after eating a high-fat diet for both 4 and 12 weeks, while a 35% decrease in the  
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Figure 1: Heterozygous mice inheriting a p deletion on MMU 7. 
Mice inheriting the plo 1 locus maternally (right mouse) are significantly fatter than those 
inheriting the same deletion paternally (left mouse).  These mice are age- and sex-
matched.  Photo courtesy of E. Michaud, ORNL.   

8 
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soleus muscle was achieved only after 12 weeks [9].  Based on the above data, these p 

deletion mutants represent a novel polygenic mouse model associated with obesity and 

T2DM.    

 

Atp10c 

After the novel polygenic mouse model of obesity and T2DM described above 

was generated, this phenotype was deletion-mapped to the plo 1 region, which 

encompasses the 1 cM region between γ-aminobutyric acid A receptor β-3 (Gabrb3) and 

ubiquitin protein ligase E3A (Ube3a) of MMU 7.  Gabrb3 has been linked to cleft palate 

formation in humans, while mutations in Ube3a cause the human neurological disorder 

Angelman Syndrome [8].  This region is syntenic to the human chromosomal region HSA 

15q11-q13 [62-65].  DNA sequencing showed that the only gene within this interval was 

a P-type ATPase [8], which was later identified as Atp10c, or pfatp (Figure 2) [62, 66].   

Atp10c is a novel type IV P-type ATPase and putative aminophospholipid 

transporter (APLT) containing 21 exons.  In p23DFiOD heterozygotes, the complete Ube3a 

and the first two exons including the 5′ promoter region of Atp10c are deleted whereas 

the complete Atp10c and Ube3a genes along with the 5′ and 3′ flanking regions are 

deleted in p30PUb mice [66].  Since Ube3a transgenic mice are not obese [67, 68], it is 

reasonable to expect that it is not the candidate for the altered glucose and lipid 

metabolism disorders associated with the p locus deletions.   

The sequence of the human ortholog, ATP10C, has been mapped to 15q12, which 

is part of the critical region for Angelman Syndrome [62-64, 69].  Another deletion  
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Figure 2: An integrated physical and deletion map of MMU 7. 
This deletion map shows that Atp10c is the only transcript located in the region between 
Gabrb3 and Ube3a on MMU 7.  The solid black line in the middle is MMU 7 extending 
from the centromeric (cen) to telomeric (tel) end.  The arrows above the genes denote the 
direction of transcription and the solid lines above the chromosome show the p deletions 
generated.  Modified from Dhar et al [66]. 

10 
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mouse model has been reported that encompasses the same region as that of Atp10c, 

which carries a transgene insertion that created a 4Mb deletion and represents a model of 

Angelman Syndrome when maternally inherited [70].  The Angelman Syndrome mice are 

viable and fertile but become obese at 4-6 months of age [70].  Cattanach et al also 

reported a mouse model of Angelman Syndrome with late-onset obesity reported [71].  

All of these models implicate Atp10c to be a strong candidate for the obesity phenotype.  

Human geneticists have also identified a class of AS patients with the additional 

phenotype of increased body mass index [72], suggesting that Atp10c/ATP10C may play 

an important role in obesity of multiple etiologies, in mice and humans, respectively. 

P-type ATPases 

 P-type adenosine triphosphatases (P-type ATPases) are the best known and most 

extensively studied membrane transporters.  Many of these integral membrane proteins 

mediate the ATP-dependent transport of small cations across biological membranes by 

the addition or removal of a high energy inorganic phosphate to or from an aspartate 

residue in the conserved DKTGTLT amino acid sequence [73, 74].   

Using phylogenetic analysis, P-type ATPases have been divided into five major 

subfamilies [5].  The type I subfamily of P-type ATPases includes heavy metal ion 

transporters, while the type II subfamily catalyzes transport of non-heavy metal ions, 

such as the Na+K+-ATPase [73, 74].  The type III subfamily includes ATPases expressed 

in plants and fungi that transport magnesium and hydrogen ions, while the type IV 

subfamily members are found to transport phospholipids in eukaryotic cells.  Although 

only one member has been identified in the type V subfamily, this yeast ATPase has been 

implicated in cellular calcium homeostasis and endoplasmic reticulum (ER) function [5].       
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   Type IV P-type ATPases can be further subdivided into six different classes 

based on sequence similarities [75].  Atp10c is part of class 1, which includes the 

aminophospholipid translocases that are responsible for the asymmetric distribution of 

membrane phospholipids [76].  Numerous type IV P-type ATPases have already been 

associated with human disorders of intramembranous transport [4, 5], providing 

additional evidence to look at the role of the novel type IV P-type ATPase Atp10c in 

metabolic pathways.   

Aminophospholipid transporters  

The asymmetric phospholipid bilayer of a cell includes the choline-containing 

phosphatidylcholine (PC) and sphingomyelin (SM) along with the aminophospholipids 

phosphatidylserine (PS) and phosphatidylethanolamine (PE).  PC and SM are localized in 

the outer leaflet, while PS and PE are concentrated in the inner leaflet [6, 77-79].  This 

asymmetry is essential to the mechanisms involved in normal cellular homeostasis and is 

maintained by an energy-dependent translocation of aminophospholipids from the outer 

to the inner leaflet catalyzed by aminophospholipid transporters (APLTs).  

Randomization of phospholipids, which tend to equilibrate between the two leaflets, can 

affect the structure and activity of channels, transporters, and signal transducing proteins.  

In order to actively maintain the asymmetric phospholipid distribution, proteins that 

translocate the phospholipids are necessary.  

  These lipid flippases, or lipid translocases, are a class of proteins involved in 

regulation of phospholipid distribution in membrane bilayers [7].  Studies in yeast have 

also shown that these flippases are important in protein trafficking in the exocytic and 

endocytic pathways [6, 7].  Members of the type IV P-type ATPase subfamily are thought 
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to catalyze the transbilayer transport of amphipathic molecules, such as the 

aminophospholipids PS and PE [79-81].  The founding member of this subfamily is the 

yeast drs2 gene, which is an ortholog of mouse Atp10c that has been linked to ribosomal 

assembly, formation of Golgi-coated vesicles, and maintenance of bilayer asymmetry 

[82-84].  The murine Atp8a1 gene has also been recently investigated as a potential 

aminophospholipid flippase; it was found to have properties similar to, but distinct from, 

the properties of these flippases [85].  A deficiency of the human type IV P-type ATPase 

ATP8B1 caused a loss of membrane asymmetry and reduced resistance to hydrophobic 

bile salts.  This loss of phospholipid asymmetry due to lack of a lipid flippase may 

subsequently impair bile salt transport and cause cholestasis [86]. 

Translocase activity has been detected in a variety of membranes, including the 

plasma membranes of erythrocytes, fibroblasts, spermatozoa, and the Golgi apparatus.  

Changes in the physical properties of the lipid bilayers are suggested to alter several 

functions such as cell-cell interaction, signal transduction pathways, and clotting 

disorders by modulating the activity of lipid-dependent proteins.  A loss of erythrocyte 

PS asymmetry is seen in patients with diabetes or strokes [87-89], which emphasizes the 

need to maintain the asymmetry of the lipid bilayer for normal cellular functions.  

Changes in the composition of the lipid bilayer along with alterations in the asymmetry of 

the adipocyte membranes result in obesity-related phenotypes.  Studies have suggested 

that SM, which accumulates in cell membranes in diseases with peroxisomal disorders, 

may be involved with peroxisome proliferator-activated receptors (PPARs) and may also 

contribute to insulin resistance [88, 89].  APLTs have a role(s) in insulin signaling, 
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illustrating the importance of type IV P-type ATPases in cell biology and human health 

and disease.    

   

Insulin signaling pathway 

 Insulin is an important anabolic hormone that regulates a number of cell processes 

with a strong, direct impact on cellular homeostasis.  It increases the storage of 

triglycerides in adipocytes via stimulation of lipogenesis (fat synthesis), inhibition of 

lipolysis (fat breakdown), and differentiation of preadipocytes to adipocytes.  The 

resulting increase in adiposity causes secretion of various adipokines that can also lead to 

secondary effects in liver and skeletal muscle.  An abnormality in any of these processes 

will result in insulin resistance, producing high levels of glucose and lipids in the blood.  

Insulin resistance in skeletal muscle and adipose tissue can be caused by alterations in 

insulin binding and signaling that effect glucose and lipid metabolism.  In both tissues, 

insulin sensitivity improves when insulin binds to its receptor, resulting in downstream 

effects that lead to the uptake of glucose from the blood [90, 91].  

 A key rate-limiting step involved in an impaired insulin response is a defect in 

glucose transport.  Insulin stimulates glucose transport via translocation of an adipose 

tissue- and muscle-specific glucose transporter protein, GLUT4, from the intracellular 

space to the cell surface.  Stimulation occurs when insulin binds to its heterotetrameric 

integral membrane receptor, leading to activation of the tyrosine kinase domain of the 

receptor.  This triggers a signaling cascade that results in the translocation and fusion of 

intracellular vesicles containing GLUT4 to the plasma membrane, which accounts for the 

majority of glucose disposal in both muscle and adipose tissue (Figure 3) [92-95]. 



www.manaraa.com

 

  

 

Figure 3: Insulin action in target tissues. 
Insulin (i) binds to hetero-oligomeric insulin receptor (IR), stimulating 
autophosphorylation of the receptor.  This, in turn, leads to phosphorylation of the 
docking proteins IRS1 and IRS2.  IRS1 and IRS2 are coupled to the mitogen-activated 
protein (MAP) kinase and phosphoinositide 3 (PI3) kinase signaling cascades.  This leads 
to translocation of vesicles containing the GLUT4 glucose transporter to the plasma 
membrane, facilitating glucose (g) uptake by target tissues.  Insulin signaling also 
ultimately leads to changes in gene expression.  Modified from Gannon [38]. 
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A major cause of insulin resistance in adipose tissue appears to be a depletion of GLUT4.  

Conversely, GLUT4 levels are normal in the skeletal muscle.  Thus, insulin resistance 

seems to be caused by a defect in GLUT4 translocation.  Abnormalities in glucose uptake 

leading to insulin resistance can also arise from defects in insulin signal transduction 

involving effector molecules in the pathway such as the insulin receptors IRS-1, IRS-2, 

and IRS-3, and phosphoinositide 3-kinase (PI3K).  Defects in any part of the insulin 

signaling pathway have been shown to be important in the pathogenesis of insulin 

resistance [92, 96, 97].  The question of how impaired glucose uptake and defective 

insulin signaling in adipose tissue and skeletal muscle contributes to whole body insulin 

resistance remains unanswered, but targeting insulin resistance has still become an 

important therapeutic goal in the treatment of T2DM.     

 

Fatty acid uptake 

In addition to abnormalities in the insulin signaling pathway, a second aspect of 

insulin resistance is its strong linkage with the regional distribution of adipose tissue.  

Abdominal adipose tissue is more metabolically active than peripheral adipose tissue, 

resulting in the release of more free fatty acids into the blood that are absorbed by the 

liver and ultimately elevate glucose levels.  In the peripheral tissues, elevated levels of 

free fatty acids impair insulin secretion by the pancreas and result in increased insulin 

resistance [98]. 

Fatty acids containing aliphatic tails with 16 or more carbons are known as long-

chain fatty acids and act as fuels to generate energy in the form of ATP.  These fatty 

acids are imported into adipocytes and transformed into triglycerides when bound to 
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glycerol.  The first step in the utilization of fatty acids is uptake across the plasma 

membrane, which can occur either through diffusion or by protein mediation.  Similar to 

the uptake of glucose in the insulin signaling pathway, fatty acid uptake is also controlled 

by insulin.  A highly regulated process, fatty acid uptake mainly requires fatty acid 

transport proteins (FATPs), which are also known as solute carrier family 27 (SLC27) 

[99, 100].  Insulin induces an increase in fatty acid uptake by translocation of FATPs 

from an intracellular compartment to the plasma membrane in adipocytes.  There have 

been six FATP genes identified in human and mouse genomes that each have special 

physiological functions and specific tissue distribution [99-101].  Analyses of FATP1-

knockout mice have shown that insulin causes translocation of FATP1, which is 

expressed in adipose tissue, skeletal muscle, and heart, and leads to enhanced fatty acid 

uptake.  However, the closely related FATP4 and CD36 proteins did not show a similar 

localization, suggesting that FATP1 activity has an important role in cellular 

homeostasis.  FATP1 translocation has been suggested to involve a flip-flop or 

translocase mechanism [102-104].  Stahl proposed a similar model for cellular fatty 

uptake (Figure 4) in which long-chain fatty acids may be transported across the plasma 

membrane directly by FATP complexes or first bind to CD36 proteins, which then 

transfer the fatty acids on to FATPs [99].  Compared to research on GLUT4 trafficking 

and the insulin signaling pathway, mechanisms underlying FATP1 trafficking in the 

uptake of fatty acids are not clearly understood.  However, there is some overlap between 

these two pathways.                 
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Figure 4: A model for cellular fatty uptake. 
Extracellular long-chain fatty acids (LCFA) may bind directly to fatty acid transport 
protein (FATP) complexes to be transported into cells or they could bind to CD36 that 
will then transfer the LCFA to a FATP dimmer.  In order to prevent their efflux out of the 
cell, intracellular LCFAs are coupled to coenzyme A (CoA) by long-chain fatty acyl-CoA 
synthetase (LACS).  Fatty acid binding proteins (FABPs) act as a cytoplasmic buffer.  
Modified from Stahl [99]. 
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Adipogenesis 

As described above, free fatty acids are imported into adipocytes and transformed 

into lipid molecules.  An increase in the number and/or size of these adipocytes leads to 

obesity.  The development of adipocytes, or adipogenesis, is an important process leading 

to the deposition of fat that involves biochemical, physical, and molecular changes in the 

conversion of undifferentiated to differentiated cells.  This process is also largely 

regulated by insulin, which exerts transcriptional and translational controls on adipogenic 

factors.   

 The transition from an egg to the determination and conversion of preadipocytes 

into mature adipocytes occurs in a series of stages in vivo (Figure 5).  Adipogenesis is the 

conversion of undifferentiated, fibroblast-like preadipocytes to mature, rounded 

adipocytes following a phase of clonal expansion and subsequent growth arrest.  Since fat 

cell differentiation in vitro recapitulates most of the key features of adipogenesis in vivo, 

cell culture techniques are extensively used to investigate this process [105].   

Research aimed at identifying regulatory factors involved in adipocyte 

differentiation has begun to provide important clues about adipocyte biology and its role 

in the development of obesity and T2DM.  Efforts to identify key inhibitors or activators 

of adipogenesis assume that the potential to control or reverse this process might 

ultimately lead to a way to inhibit the development of obesity and its associated 

pathologies.  Studies have shown that lipoprotein lipase is expressed early in the process, 

followed by expression of C/EBPβ and C/EBPδ.  Subsequently, the master regulators of 

differentiation, C/EBPα and PPARγ, are expressed.  Triglycerides also accumulate in the  
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Figure 5: A model for the development of adipocytes. 
Beginning with a fertilized egg, this shows a potential model for the development of 
adipocytes based on the developmental stages of determination and commitment.  
Darkened shapes represent nuclei or pronuclei.  Modified from Ntambi and Kim [105]. 

20 
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adipocytes and expression of fatty acid synthase, GLUT4, adipocyte binding protein 2, 

and resistin increases [105-107].         

 

PPARs and TZDs 

Peroxisome proliferator-activated receptors (PPARs) 

The nuclear receptor subfamily peroxisome proliferator-activated receptors 

(PPARs) are transcription factors that bind to specific peroxisome proliferator response 

elements (PPREs) in an enhancer site of a target gene upon binding of a ligand to the 

PPAR [108, 109].  When an agonist binds to a PPAR, the conformation of PPAR is 

altered and stabilized to allow recruitment of transcriptional coactivators and result in 

increased gene transcription.  Conversely, binding of an antagonist to PPAR will alter the 

conformation to ultimately result in decreased gene transcription.   

There are three isoforms that are each encoded by separate genes: PPARγ, 

PPARα, and PPARδ.  All of the PPARs are the primary targets of synthetic compounds 

used to treat diabetes and dyslipidemia, while many of them also have putative roles in 

other metabolic disorders [108, 109].  One of the more widely studied isoforms is 

PPARγ, which is involved in both adipogenesis and the insulin signaling pathway.     

PPARγ and adipogenesis 

 PPARγ is considered to be the master regulator of adipogenesis, controlling many 

known and currently undiscovered aspects of the process.  Differentiation is partly 

regulated by a cascade of transcriptional events that lead to activation of CCAT/enhancer 

binding proteins (C/EBPs) and PPARγ by insulin, dexamethasone, and 

isobutylmethylxanthine that constitute the induction cocktail [110, 111].  Additional 
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regulation of PPARγ activity during this process is a widely studied area with recent 

studies showing a role for mitogen-activated protein kinase/extracellular regulated kinase 

(MEK/ERK) signaling along with activation of C/EBPβ in the regulation of PPARγ 

activity [110, 112].  Although intimately involved with fat cell differentiation, there is 

still so much missing information concerning the role of PPARγ in this process that 

constitutes the focus of many current research projects.     

 PPARγ and the insulin signaling pathway 

 In addition to its role in adipogenesis, PPARγ is involved in the insulin signaling 

pathway.  Liao et al recently demonstrated that suppression of PPARγ decreased insulin-

stimulated glucose uptake [113].  They also showed that PPARγ is essential for the 

process of adipogenesis, but is not as necessary for the maintenance of an adipocyte state.  

Although a PPARγ ligand with a high affinity, the novel modulator LG100641 does not 

actually activate PPARγ; it blocks thiazolidinedione-induced PPARγ activation and 

subsequent adipocyte differentiation [114].  Similar to other PPARγ ligands that do 

activate PPARγ, LG100641 surprisingly increases glucose uptake in 3T3-L1 adipocytes.  

The discovery of such PPARγ modulators that increase insulin sensitivity but do not 

increase adipogenesis is important in the future of improved therapy for metabolic 

diseases.      

Thiazolidinediones (TZDs) 

 Thiazolidinediones (TZDs) are anti-diabetic drugs that enhance insulin sensitivity 

and improve glucose uptake through the activation of PPARγ.  Typically used in the 

management of T2DM [115], TZDs have also been shown to exert anti-inflammatory 
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effects on vascular cells [116].  Activation of PPARγ leads to increased adipogenesis, 

thus treatment with TZDs should increase adiposity.  Interestingly, TZDs actually inhibit 

leptin (ob) gene expression, which is predominantly expressed in adipose cells, following 

treatment of 3T3-L1 adipocytes [117].  These results suggest that the negative regulation 

of leptin by TZDs may indicate that these compounds induce a state of adipocyte 

differentiation that is subtly different from that induced by the differentiation cocktail.  

There are numerous types of TZDs, although troglitazone (TGZ) and MCC555 will be 

discussed here within.   

Troglitazone (TGZ) 

 Troglitazone (TGZ), originally named CS-045 [118, 119], was the first member of 

the TZD class of medications to be approved for clinical use [120, 121].  Previous 

research indicated direct improvement of insulin action in liver, skeletal muscle, and 

adipose tissue [118-120], along with the reduction of elevated plasma glucose in animal 

models T2DM [119].  The marketed form of TGZ (Rezulin) was withdrawn in 2000 due 

to increased hepatoxocitiy compared to the TZDs rosiglitazone (Avandia) and 

pioglitazone (Actos) [122].  However, TGZ is still used in laboratory research today as a 

representative TZD to investigate effects on PPARγ, adipogenesis, and/or the insulin 

signaling pathway [123-125].  

 MCC555 

 MCC555, also known as RWJ-241947 [126], is a novel TZD that has been found 

to have unique characteristics compared to the other TZDs [116, 127, 128].  Its effect on 

the transcriptional activity of PPARγ depends on the cell type or DNA binding site; it can 

act as a full agonist, partial agonist, or antagonist [129].  It is also the only TZD thus far 
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that can activate PPARγ, PPARα, and PPARδ [116].  MCC555 not only exhibits anti-

diabetic effects, but also anti-proliferative activity against prostate cancer cells [126] and 

anti-tumorigenic and/or pro-apoptotic activity in human colorectal cancer cells [130].     

Mode of TZD action 

It has been demonstrated that TZDs reduce insulin resistance in adipose tissue, 

muscle, and the liver through a mechanism that involves activation of PPARγ [131].  

However, PPARγ is predominantly expressed only in adipose tissue, not muscle or the 

liver.  This has led to investigations into a more exact mechanism of the action of TZDs.    

Although the exact mode of the anti-diabetic action of TZDs drugs is still 

unknown, there are two main hypotheses [131].  TZDs may cause PPARγ-mediated 

actions on adipose tissue that indirectly trigger improved glucose homeostasis of skeletal 

muscle and liver or they may improve insulin sensitivity by direct interaction with muscle 

and liver in vivo (Figure 6).  Further research is needed to elucidate an exact mechanism.   

 

RNA interference 

 RNA interference (RNAi) is a post-transcriptional gene silencing that was first 

coined in 1998 to describe the observation that double-stranded RNA could be used to 

block gene expression [132].  It is initiated by a 21-23 nucleotide short interfering RNA 

(siRNA) that is either generated in vitro by cleavage of double-stranded RNA using the 

enzyme Dicer [133] or generated synthetically and introduced into the cell 

experimentally (Figure 7).  After the siRNA associates with the RNAi-induced silencing 

complex (RISC), complementary mRNA transcripts are targeted for degradation.  This 

leads to silencing of the gene and, consequently, no new protein is translated.   
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Figure 6: Possible modes of anti-diabetic TZD action. 
It is known that TZD treatment activates PPARγ and leads to adipose tissue remodelling 
along with the fact that insulin sensitization leads to improved glucose homeostasis.  
However, the chain of events leading from TZD treatment to improved glucose 
homeostasis is unknown.  PPARγ activation and/or direct effects on adipose tissue may 
be the sole cause of improved glucose homeostasis, or TZD treatment may directly 
improve glucose homeostasis by direct interaction.  Modified from Fursinn et al  [131].   
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Figure 7: RNAi pathway. 
In order to form siRNA, long double-stranded RNA (dsRNA) is cleaved in vitro by the 
Dicer enzyme in an ATP-dependent reaction or experimentally synthesized siRNA is 
generated and transfected into the cells.  The siRNA then forms a complex with the 
RNAi-induced silencing complex (RISC).  After the siRNA duplex is unwound with the 
required ATP, the single-stranded antisense strand guides RISC to the messenger RNA 
(mRNA).  The complex binds to the strand at the complementary sequence, resulting in 
cleavage of the target mRNA.  Modified from Dykxhoorn et al [134]. 
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With the recent advent of synthetic siRNA technology, RNAi-based gene 

silencing in cultured 3T3-L1 adipocytes has been extremely valuable in dissecting 

elements crucial for the insulin signaling pathway and adipocyte differentiation [135-

137].  Gene silencing in cultured mammalian cells is being used as an effective way to 

quickly screen if a specific gene is required for a biological function.  It is also being used 

in high throughput screens to determine if there are any genes within a large set of genes 

required for a particular function [138].  The use of RNAi is definitely an important 

experiment to do before more expensive experiments to generate transgenic mice are 

undertaken.   

RNAi has been used to examine the role of various genes and proteins in the 

insulin signaling pathway.  For example, knockdown of Golgin-160, a peripheral Golgi 

protein known to be a caspase inhibitor during programmed cell death, actually led to 

increased translocation of GLUT4 to the plasma membrane and the subsequent increase 

in glucose uptake [139].  This suggests that Golgin-160 is required for the proper sorting 

of GLUT4 to the insulin-responsive compartment for the uptake of glucose.  On the other 

hand, knockdown of the GTPase TC10α indicated that it is specifically required for 

insulin-stimulated glucose uptake in adipocytes due to the inhibition of glucose uptake 

and GLUT4 translocation upon silencing [140].  RNAi will be used in a similar fashion 

for this project to study the role of Atp10c/ATP10C in the insulin signaling pathway.     

 

Research project overview 

Although there is a consensus on the physiological function of flippases in 

intracellular signaling and protein trafficking, their precise biological roles are poorly 
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understood.  The hypothesis of this project is that there is an association between type 4 

ATPase mediated phospholipid translocase activities and cell signaling and intracellular 

protein trafficking.  The Swiss murine 3T3-L1 cell line [10] was used to investigate the 

biological role of Atp10c/ATP10C in the process of adipogenesis and the insulin 

signaling pathway.  Specific experiments and the corresponding results will be discussed.
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CHAPTER 3.  EXPERIMENTAL INVESTIGATIONS 

Abstract 

Previous research has shown that heterozygous mice inheriting a maternal 

deletion of the Atp10c gene become obese and exhibit hyperinsulinemia, hyperlipidemia, 

and hyperglycemia traditionally associated with T2DM [8, 66, 141].  Given the 

complexity in the phenotype of these Atp10c heterozygous mice, it is difficult to 

distinguish between primary and secondary effects in the whole animal model.  

Therefore, the Swiss murine 3T3-L1 cell line [10] was used as an in vitro model and 

primary preadipocytes isolated from mouse adipose tissue, plated, and differentiated in 

culture were used as an ex vivo model to study the transcriptional and translational 

regulation of Atp10c/ATP10C. 

The aim of the present study was to investigate the biological role of 

Atp10c/ATP10C in the process of adipogenesis and the insulin signaling pathway in the 

in vitro model.  Using RT-PCR to monitor gene expression and Western blotting to 

monitor protein expression, Atp10c mRNA was 2-fold down-regulated while ATP10C 

protein was up-regulated during adipogenesis.  Treatment of adipocytes with a PPARγ 

agonist further down-regulated Atp10c while increasing adipogenesis, suggesting a 

potential role for Atp10c in the differentiation process and as a PPARγ modulator.  

Glucose uptake in adipocytes was increased when Atp10c/ATP10C was knocked down 

using siRNA, elucidating the possibility that Atp10c/ATP10C is involved in the insulin 

signaling pathway.  Based on these results, Atp10c/ATP10C has a role in the insulin 

signaling pathway and may have a role in adipogenesis; further research is necessary to 

confirm the exact function. 
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Introduction 

 The prevalence of obesity and diabetes in society today continues to rise each 

year [1-3].  In the United States, obesity increased from 19.8% to 20.9% while the 

prevalence of diabetes increased from 7.3% to 7.9% from 2000 to 2001, respectively [2].  

Similar rising trends are being observed throughout the world, with the projection that 

366 million people will have diabetes by 2030 [27].  There has been no recent research to 

indicate that these numbers are declining, leaving the high levels of obesity and T2DM as 

a major public health concern.  Based on these increasing statistics, there is a dire need 

for new approaches to examine the correlation between obesity and T2DM, to understand 

what causes these diseases, and to elucidate unknown players in metabolic pathways 

related to obesity and T2DM.         

 The novel type IV subfamily of P-type ATPases are putative aminophospholipid 

translocases that have been associated with human disorders of intramembranous 

transport [4, 5].  Studies in yeast have also shown that these flippases are important in 

protein trafficking in the exocytic and endocytic pathways [6, 7].  Using positional 

cloning and genomic sequencing strategies, the novel type IV P-type ATPase Atp10c has 

been cloned to mouse chromosome 7 [8].  Heterozygous mice inheriting a maternal 

deletion of the Atp10c gene exhibit typical hallmarks of insulin resistance syndrome 

including obesity, hyperinsulinemia, and insulin resistance [9].  These mice represent a 

novel genetic model of diet-induced obesity and T2DM.   

Although there is a consensus on the physiological function of these flippases in 

intracellular signaling and protein trafficking, their precise biological roles are poorly 

understood.  The hypothesis of this project is that there is an association between type 4 
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ATPase mediated phospholipid translocase activities and cell signaling and intracellular 

protein trafficking.  To investigate the biological role of Atp10c/ATP10C in the process 

of adipogenesis and the insulin signaling pathway using the Swiss murine 3T3-L1 cell 

line [10], reverse transcriptase-polymerase chain reaction (RT-PCR) and Western blotting 

were used to monitor gene and protein expression.  A basic characterization of 

Atp10c/ATP10C was performed, followed by examination of the effect of PPARγ 

agonists and effectors of glucose and lipid metabolism on Atp10c expression.  Lastly, 

glucose uptake was measured in adipocytes where Atp10c/ATP10C was knocked down 

with siRNA in order to elucidate the possibility that Atp10c/ATP10C is involved in the 

insulin signaling pathway.   

 

Materials and methods 

 More detailed, step-by-step instructions for many of the following methods are 

located in the Appendix. 

Materials 

 Cell culture reagents and oligonucleotides were obtained from Fisher Scientific 

(Fairlawn, NJ).  Insulin, isobutylmethylxanthine, isoproterenol, dexamethasone, and fetal 

bovine serum were purchased from Sigma (St. Louis, MO).  Thiazolidinediones MCC555 

and troglitazone (TGZ) and the PPARγ inhibitor GW9662 were obtained from Cayman 

(Ann Arbor, MI).  Atp10c siRNA and HiPerfect transfection reagent was obtained from 

Qiagen (Valencia, CA).  DeliverX transfection reagent was purchased from Panomics, 

Inc. (Fremont, CA). 
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Animals 

 Mice containing the radiation-induced chromosomal deletion p23FiOD located at the 

pink-eyed dilution (p) locus on MMU 7 were previously generated at Oak Ridge National 

Laboratory [59, 60].  A homozygous deletion at the p locus is lethal, while heterozygous 

mice will survive.  The p23DFiOD strain contains a deletion of the first two of the 21 exons 

of Atp10c, including the 5′ promoter region [9].  These mice are currently housed and 

maintained at the University of Tennessee as previously described [61].  The wild-type 

males are heavier than their age-matched female counterparts, thus only female mice are 

currently being used for experimentation.  

 Previous research has shown that heterozygous mice fed a high-fat diet (45% fat) 

maternally inheriting the Atp10c deletion exhibit a significantly higher body weight, 

adiposity index, and plasma insulin, leptin, and triglyceride concentrations compared to 

heterozygous mice that inherit the deletion paternally [9].  Therefore the mutant mice 

inherit the deletion maternally, while the control mice inherit it paternally.  

 For the following methods, mice were fed a regular chow diet (Laboratory Rodent 

Diet, Checkers PMI Nutritional International, Brentwood, MO) and killed by CO2 

asphyxiation.  Only control mice were used for this study.  All procedures were approved 

by and in accordance with the University of Tennessee Institutional Animal Care and Use 

Committee (protocol #1309-1206).   

Isolation and differentiation of primary preadipocytes and adipocytes  

Preadipocytes and adipocytes were isolated from adipose tissue of 4−6 month old 

adult female control mice [61] using the procedure of Rodbell with modifications [142].  

Approximately 2 g of tissue was collected, minced into small pieces and digested with 
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collagenase (2 g/L) (type I, Worthington Biochemical Corp., Lakewood, NJ) at 37°C for 

25 min in modified Krebs-Ringer bicarbonate albumin buffer pH 7.4, containing 1 g/L 

BSA and 4.4 mM glucose.  Digested fat tissue was filtered through a 100 µm nylon mesh 

and adipocytes were isolated by a low speed centrifugation at 800 rpm for 10 min.  These 

floating adipocytes were washed once with Hank’s balanced salt solution (HBSS) and 

collected.  The stromal vascular fraction rich in primary preadipocytes was then pelleted 

by a high speed centrifugation at 1500 rpm for 15 min.  Resulting stromal vascular 

fraction cell pellets were treated with red blood cell lysis buffer (eBioscience, San Diego, 

CA) for 5 min at room temperature, rinsed with phosphate buffered saline supplemented 

with 1% BSA, and centrifuged at 800 rpm for 10 min.  Stromal vascular fraction cells 

were either collected or seeded in 6-well cell culture plates at a density of 5x105 

cells/well.   

At 70−80% confluency, primary preadipocytes in the stromal vascular fraction 

cells were induced to differentiate in growth medium supplemented with 10 µg/ml insulin 

(high insulin medium).  Differentiation was complete in 8−10 days as assessed by Oil 

Red O (ORO) staining and RT-PCR.  These cells are the primary adipocytes obtained 

from primary preadipocytes differentiated in culture.   

3T3-L1 cell culture  

3T3-L1 preadipocytes obtained from ATCC (Manassas, VA) were grown at 37ºC 

in 5% CO2 in Dulbecco’s modified Eagle’s medium containing 10% fetal bovine serum 

and 1% penicillin/streptomycin (growth medium).  At 70−80% confluency, adipocyte 

differentiation was induced by incubating the cells in growth medium supplemented with 

0.5 mM isobutylmethylxanthine, 1 µM dexamethasone, 1 µg/ml insulin, and 10 µM 
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troglitazone (differentiation medium) for two days.  After 2 days, cells were maintained 

in growth medium supplemented with 1 µg/ml insulin and 10 µM troglitazone 

(maintenance medium) and grown for 7−10 days; the medium was changed every two to 

three days.  Cells were fully differentiated (>80%) by day 8−10 as assessed by ORO 

staining and RT-PCR; these are 3T3-L1 adipocytes.  Day 0 represents the day on which 

the differentiation media is added. 

Confluent 3T3-L1 preadipocytes or adipocytes were incubated for 24 hours in 

serum-free medium before various effectors were added as described in the results.  

PPARγ agonists and antagonists were replenished every time the media was changed. 

Oil Red O staining 

Differentiation was assessed using a modified procedure of ORO staining [143].  

Cells were washed with HBSS and fixed with 1% paraformaldehyde for 5 min.  Cells 

were then rinsed with deionized water followed by the addition of two aliquots of 85% 

propylene glycol for 5 min each.  ORO stain was added (0.7% w/v in 85% propylene 

glycol) and cells were gently swirled for 20 min at room temperature.  Following a final 

wash with 85% propylene glycol, cells were counterstained with hematoxylin.  They 

were visualized and photographed using a Zeiss Invertoskop 40C microscope and Canon 

Powershot A620 digital camera. 

ORO quantitation was performed using the procedure from the McNeil lab [144].  

Briefly, cells were stained with ORO similar to above without the addition of 

hematoxylin counterstain.  After drying at RT for 10 min, ORO was eluted with the 

addition of 100% isopropanol for 15 min, followed by OD measurement at 540 nm.   
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Small interfering RNA (siRNA) 

 Two different Atp10c siRNAs were obtained (Qiagen, Valencia, CA); one was 

generated from the sequence at the 3′ end of the Atp10c gene (sense: r(CCU GGG UAU 

UGA AAC CAA A)dTdT and antisense: r(UUU GGU UUC AAU ACC CAG G) dTdG) 

and the second was generated from the sequence at the 5′ end (sense: r(CGU CUU UGC 

UGC AAU GAA A)dTdT and antisense: r(UUU CAU UGC AGC AAA GAC G)dGdA).   

 HiPerfect transfection reagent (Qiagen, Valencia, CA) was used to transfect 

preadipocytes with 200 nM Atp10c siRNA while the lipid-based DeliverX transfection 

reagent (Panomics, Fremont, CA) was used to transfect adipocytes with 30 nM Atp10c 

siRNA.  Preadipocytes or adipocytes were transfected with siRNA and either collected or 

used for glucose uptake at 24 h, 48 h, or 72 h post-transfection.  For experiments looking 

at different days during adipogenesis, siRNA was added each time the media was 

changed throughout differentiation.  Beginning at day 6, siRNA was transfected using 

both HiPerfect and DeliverX transfection reagents.  

 To transfect preadipocytes, equal volumes of 20 µM Atp10c siRNA and HiPerfect 

transfection reagent were combined, flicked to mix, and left at room temperature for 10 

min.  Following incubation, 40 µl of the transfection complex was added to the medium 

in each 60 mm cell culture dish. 

 Adipocytes were transfected as described [145].  Briefly, cells were washed once 

with PBS and 300 µl of the 30 nM working siRNA transfection complex was added per 

dish.  Cells were incubated at room temperature for 3-5 min, followed by the addition of 

300 µl serum-free media per dish and incubation under normal cell culture conditions for 



www.manaraa.com

 

36 

2-4 h.  Finally, 1000 µl complete growth media was added per dish and incubated under 

normal cell conditions for 24-72 h.       

Semiquantitative RT-PCR 

These procedures are as previously described, with modifications [141].  Total 

RNA was extracted from 3T3-L1 preadipocytes and adipocytes, primary preadipocytes 

and adipocytes fractionated from adipose tissue, and primary preadipocytes and 

adipocytes plated and differentiated in culture using RNeasy Mini RNA kit (Qiagen, 

Valencia, CA) according to the manufacturer’s instructions.  About 1x106 cells yield 

30−50 µg of total RNA.  Double-stranded cDNA was synthesized using the iScript 

cDNA synthesis kit (Bio-Rad, Hercules, CA).  Semi-quantitative RT-PCR was performed 

for Atp10c (F-5’CCTGTGCTCTTCATTCTGGC3’, R-

5’CACTGCAGCTGTGAATCTGT3’), resistin (F-

5’ACTGAGTTGTGTCCTGCTAAG3’, R-5’CCACGCTCACTTCCCCGACATC3’), 

and PPARγ (F-5’GGTGAAACTCTGGGAGATTC3’, R-

5’CAACCATTGGGTCAGCTCTT3’) mRNAs using GoTaq® Green Master Mix 

(Promega Inc., Madison, WI) with β-actin (F-5’ATGGGTCAGAAGGACTCCTA3’, R-

5’CAACATAGCACAGCTTCTCT3’) as an internal control.  RT-PCR was performed 

under the following conditions: 5 min at 94°C followed by 30 cycles of denaturation at 

94°C for 30 s, annealing at 54°C for 30 s, and extension at 72°C for 30 s, and finishing 

with 5 min at 72°C.  RT-PCR products were analyzed on 1% agarose gels containing 1 

µg/µl ethidium bromide and viewed under ultraviolet light.  Data are expressed as the 

ratio of the target gene expression to that of an internal control.   
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Protein preparations 

Total membrane proteins 

Total membrane proteins were isolated as described with modifications [146].  

Briefly, cells were harvested and homogenized in homogenization buffer (20 mM 

HEPES, pH 7.5 and 10 mM KCl), containing 1 mM protease inhibitors (pi), with a 

PowerGen 700 polytron for 10 sec followed by passage through a 20-gauge needle 30 

times.  Following centrifugation, membrane pellets were resuspended in PARP buffer (50 

mM tris, pH 6.8; 8 M urea; 2% SDS) with 1 mM DTT and 1 mM pi.       

Whole cell lysates or total cellular extracts 

Total proteins were isolated using two different methods: by SDS lysis buffer 

[147] or by the standard radioimmunoprecipitation (RIPA) buffer.   

Briefly, cells were washed twice with PBS at room temperature followed by the 

addition of 1 ml lysis buffer at p 7.4 (4% SDS, 50 mM HEPES, 150 mM NaCl, 10 mM 

DTT, 1:1000 pi).  Cells were harvested with a cell scraper, transferred to a small 

eppendorf tube, heated to 100°C for 5 min, and immediately stored at -80°C. 

Total cell lysates were isolated using RIPA buffer according to the manufacturer’s 

instructions (Boston Bioproducts, Inc., Worcester, MA).  Briefly, cells were washed 

twice with PBS on ice followed by the addition of 100 µl RIPA buffer supplemented with 

pi (sodium orthovanadate, sodium fluoride, PMSF, aprotinin, leupeptin).  Cells were 

scraped, transferred to a small eppendorf tube, and stored at -80°C.   

Subcellular proteins 

Subcellular fractions of 3T3-L1 cells were isolated as follows [147].  Cells were 

serum starved overnight at 37°C in DMEM supplemented with 1 mg/ml BSA.  Then 
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DMEM with or without 1 µM insulin was added and cells were incubated at 37°C for 30 

min.  Cells were washed once with HES buffer (250 mM sucrose, 20 mM HEPES, 1 mM 

EDTA, pH 7.4) at room temperature.  To each flask or dish, 3 ml HES supplemented with 

1:1000 pi was added.  Cells were scraped, collected in 50 ml Falcon tubes, and 

homogenized for 10 sec with a PowerGen 700 Polytron followed by passage through a 

20-gauge needle 30 times.  The homogenate was transferred to a centrifuge tube; 300 µl 

was collected as the whole cell lysate (WCL) fraction.  Following centrifugation at 12000 

rpm for 15 min at 4°C, the infranatant, which is comprised of the high density 

microsomal (HDM), low density microsomal (LDM), and cytosolic fractions, was 

collected in another centrifuge tube as the HLC fraction.  The pellet was resuspended in 

HES and homogenized with a 20-gauge needle 5 times followed by another 

centrifugation at 12000 rpm for 20 min at 4°C.  The supernatant was discarded and the 

pellet was resuspended in HES again, followed by homogenization with a 20-guage 

needle 5 times.  This homogenate was overlaid on a 1.12 M sucrose cushion (29.78 g 

sucrose in 100 ml HES) and centrifuged at 25000 rpm for 60 min at 4°C.  The cloudy 

interface was collected, resuspended in HES, and centrifuged at 18000 rpm for 30 min at 

4°C.  During centrifugation, the mitochondrial nuclear pellet from the previous run was 

resuspended in 2 ml HES/pi and stored.  After centrifugation, the plasma membrane 

pellet was resuspended in 150 µl HES/pi and stored.  The HLC fraction from earlier was 

centrifuged at 20000 rpm for 30 min at 4°C.  The supernatant was transferred to another 

centrifuge tube and spun at 45000 rpm for 1.5 hr for 4°C.  During centrifugation, the 

HDM pellet was resuspended in 300 µl HES/pi and stored.  Following centrifugation, the 
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cytosolic supernatant was discarded and the LDM pellet was resuspended in 200 µl 

HES/pi and stored.       

Protein concentrations were determined using bicinchoninic acid (BCA) Protein 

Assay Reagent (Pierce Biotech Inc., Rockford, IL).   

Antibodies 

Anti-mouse GLUT1 (Alpha Diagnostic International, San Antonio, TX), anti-

rabbit GLUT 4 (Biogenesis, Mill Creek, WA, and Abcam, Cambridge, MA), anti-mouse 

Na+/K+ ATPase (Novus Biologicals, Littleton, CO), anti-rabbit β–TUBULIN (Sigma 

Genosys, St. Louis, MO), and anti-rabbit ATP10C (Sigma Genosys, St. Louis, MO) 

antibodies were used for Western blot analysis.  Anti-rabbit ATP10C was prepared and 

affinity purified commercially against a 15 amino acid peptide (Sigma Genosys, St. 

Louis, MO) followed by characterization using ELISA and peptide binding. 

Western blot analysis 

Western blotting was carried out according to standard procedures and as 

previously described [148].  20−100 µgs of proteins were resolved on 10% SDS-PAGE, 

using 2X sample buffer containing β–mercaptoethanol as a reducing agent.  Proteins 

were transferred to nitrocellulose membranes and blocked for 1 h in blocking solution 

(1% nonfat milk and 1% BSA in TBST buffer).  Membranes were incubated with specific 

primary antibodies overnight at 4ºC.  Primary antibodies were detected with horseradish 

peroxidase-coupled secondary antibody and antibody-protein complexes were detected 

by Enhanced Chemiluminescence Western Blotting Detection Kit (Pierce Biotech Inc., 

Rockford, IL).  Data from two independent experiments is reported.  Results are 

expressed as the ratio of target protein expression to that of an internal loading control. 
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Glucose uptake 

Glucose uptake in differentiated adipocytes was measured as previously described 

[149].  Briefly, adipocytes were plated in 6-well cell culture plates at a density of 3x105 

cells/well.  Cells were washed with DMEM twice and serum starved in DMEM only for 

3−5 hrs.  Each 6-well plate was set-up such that wells 1, 2, and 3 did not contain insulin 

and wells 4, 5, and 6 did contain insulin.  Cells were stimulated with 100 µM insulin in 

DMEM for 30 min at 37°C.  The insulin induction was stopped by washing the cells 

twice with 1 ml Krebs-Ringer HEPES (KRH) (121 mM NaCl, 4.9 mM KCl, 1.2 mM 

MgSO4, 0.33 mM CaCl2, 12 mM HEPES) minus glucose at room temperature.  

Cytochalasin B (5 µl of 1 mM stock/1 ml cocktail) was used to normalize for non-

specific glucose uptake.  Glucose uptake was determined after the addition of 3H-2-

deoxyglucose (1 µl of 10 Ci/mmol stock/1 ml cocktail) in KRH buffer at 37°C for 5 min.  

Incorporation was terminated by washing the cells twice with 1ml ice cold KRH plus 

glucose (25 mM glucose).  Cells were lysed at room temperature for 5 min with 2.2 ml 

digitonin release buffer (0.25 M mannitol, 17 mM MOPS, 2.5 mM EDTA, 0.25 M 

digitonin).  Following incubation, 2 ml of the cell lysates were mixed with 10 ml 

scintillation fluid and counted.  200 µl of the lysate was stored at -80°C for protein 

quantitation.   

Statistical analysis  

Semiquantitative RT-PCR products on the agarose gels and protein bands on the 

Western blots were quantitated using Scion Imaging Software 

(http://www.scioncorp.com).  Results are shown as means + SD.  Mean comparisons 
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were tested by two-tailed unpaired Student’s t-test with P values <0.01 considered highly 

significant and <0.05 considered significant.   

 

Results 

Atp10c mRNA is expressed in 3T3-L1 cells   

In order to use 3T3-L1 cells as an in vitro system to study the regulation of the 

novel gene Atp10c, its presence was first demonstrated in these cells.  Using RT-PCR, an 

886 bp product was detected in both the undifferentiated and differentiated 3T3-L1 cells 

(Figure 8).  This product has been demonstrated and confirmed to be a part of Atp10c 

cDNA (Dhar 2004).  Quantitative analysis showed that Atp10c is 2-fold down-regulated 

in 3T3-L1 adipocytes after differentiation using β-actin as the control.  As expected, 

PPARγ and resistin were up-regulated, serving as internal positive controls. 

Atp10c mRNA is expressed in primary preadipocytes and adipocytes 

To investigate whether the pattern of expression of Atp10c mRNA in vitro is 

comparable to that ex vivo and determine if a significant decrease in Atp10c expression is 

indeed related to the adipogenesis process, Atp10c mRNA was next quantitated in 

purified primary preadipocytes and adipocytes from mouse adipose tissue and in primary 

preadipocytes differentiated in culture.  Atp10c was expressed in all of these types of 

cells (Figure 9).  Compared to primary preadipocytes from mouse adipose tissue, Atp10c 

mRNA was significantly down-regulated in primary adipocytes from mouse adipose 

tissue, again confirming the regulation of Atp10c expression during adipogenesis (Figure 

9A). 
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Figure 8: Atp10c mRNA is expressed in 3T3-L1 cells. 
Atp10c, resistin, and PPARγ expression was examined by RT-PCR in 3T3-L1 
preadipocytes (PA) and adipocytes (Ad); β-actin served as an internal control.  Numbers 
in parentheses denote PCR product size in base pairs (bp). 
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Figure 9: Atp10c mRNA is expressed in primary preadipocytes and adipocytes. 
RT-PCR analysis was used to determine Atp10c, resistin, and PPARγ expression in 
primary preadipocytes (PA) and adipocytes (Ad); β-actin served as an internal control.  
Expression is shown in primary preadipocytes and primary adipocytes purified from 
mouse adipose tissue (A) or harvested from culture (B).  ORO staining (C) was used to 
monitor and confirm differentiation of primary preadipocytes in culture.    Numbers in 
parentheses denote PCR product size in base pairs (bp).  
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Adipose tissue is comprised of several types of cells such as fibroblasts, non-

differentiated mesenchymal cells, preadipocytes, and adipocytes.  Adipocytes develop  

from fibroblast-like preadipocytes within the stromal vascular fraction [150, 151].  To 

ensure that stromal vascular fraction cells in the preparations were comprised mainly of 

preadipocytes and that Atp10c expression was specific to the preadipocyte fraction, 

stromal vascular fraction cells were plated in cell culture dishes and differentiated to 

adipocytes.  Atp10c expression was then measured and, interestingly, was 2-fold up-

regulated when primary preadipocytes were differentiated to adipocytes in culture (Figure 

9B).  ORO staining was used to monitor differentiation in culture and to confirm that the 

harvested cells showed >80% differentiation (Figure 9C).  This increase in Atp10c 

expression may be due to high insulin present in the differentiation and maintenance 

media used for primary cultures. 

Due to the fact that Atp10c is similarly regulated both in vitro and ex vivo, and 

3T3-L1 cells are widely used as models of adipogenesis, most experiments were carried 

out mainly in 3T3-L1 cells.     

ATP10C protein is expressed in 3T3-L1 cells 

 After demonstrating the expression of Atp10c at the mRNA level, the next step 

was to investigate the expression of ATP10C protein.  Based on the amino acid sequence 

of ATP10C, the expected molecular weight of the protein is 169 kDa.  At first, there were 

no bands present in that range on the protein blots.  This led to an experiment looking at 

different sample loading buffers with or without the addition of a reducing agent (Figure 

10).  The original sample loading buffer used from New England BioLabs (NEB) without 

DTT did not have any bands present in the 169 kDa range and very faint bands in the 70  
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Figure 10: Different sample loading buffers can be used for Western blots. 
Equal amounts of preadipocyte (PA) and adipocyte (Ad) whole cell lysate proteins were 
loaded on a Western gel using four sample loading buffers: general, NEB + DTT, 
Laemmli, and Upstate (which contained β-mercaptoethanol).  The membranes were 
probed with ATP10C antibody.  
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kDa range.  The other sample loading buffers tested included a general buffer [152], NEB 

with DTT [153], Laemmli [154], and Upstate [155].  After switching to Upstate sample 

loading buffer, distinct bands were apparent in an upper range close to 140 kDa and a 

lower range at 70 kDa. 

 To confirm that the upper band was indeed ATP10C, a peptide neutralization 

experiment was performed.  In this experiment, a neutralizing (or blocking) peptide 

consisting of the 15 amino acids used to generate the ATP10C antibody was added in 10-

fold excess to the ATP10C antibody.  This neutralizing peptide competed with the 

ATP10C antibody to block binding of the antibody to the antigen.  After developing the 

Western blot, the addition of the neutralizing peptide will compete out the ATP10C 

protein band.  Surprisingly, this experiment showed that the ATP10C protein band that 

was competed out is 70 kDa (Figure 11).  Therefore, this lower molecular weight 

ATP10C band was the focus for future experiments.   

 Since Atp10c mRNA showed a 2-fold decrease during adipogenesis, expression of 

ATP10C protein was monitored to see if a similar pattern existed.  Interestingly, ATP10C 

protein actually increased throughout differentiation of preadipocytes to adipocytes, with 

β-TUBULIN serving as the control (Figure 12). 

Atp10c mRNA expression is regulated by PPARγ agonists and antagonists 

Since PPARγ is considered to be the master regulator of adipogenesis [110] and 

controls the expression of adipocyte genes, the effect of PPARγ agonists on Atp10c 

expression was investigated to assess whether Atp10c expression is also under PPARγ 

control.  Two anti-diabetic drugs that activate PPARγ and thus promote adipogenesis,  
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Figure 11: Peptide neutralization shows an ATP10C protein band at 70kDa. 
Equal amounts of preadipocyte (PA) and adipocyte (Ad) whole cell lysate proteins were 
loaded on a Western gel and probed in the absence (A) or presence (B) of 10-fold excess 
neutralizing peptide with ATP10C antibody. 
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Figure 12: ATP10C protein expression increases throughout differentiation. 
ATP10C expression was examined by Western blotting using 3T3-L1 total proteins 
collected in SDS lysis buffer at days 0, 3, 4, 6, 7, and 9 post-induction; β-TUBULIN 
served as an internal control.  The expression of ATP10C is denoted as arbitrary units 
(A.U.) and represented as the fold change normalized to β-TUBULIN.  **P<0.01.  
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MCC555 and troglitazone (TGZ), were used [109, 130].  Confluent preadipocytes were 

maintained in serum-free media supplemented with 10 µM TGZ or 10 µM MCC555 and 

harvested after 24 h.  3T3-L1 adipocytes were also treated with the same reagents 

throughout differentiation and harvested.  Atp10c mRNA expression was quantitated in 

both cell types.  As demonstrated by RT-PCR and ORO staining, both MCC555 and TGZ 

promoted adipogenesis and consequently reduced Atp10c expression by 5-fold and 3-fold 

respectively (Figure 13).  This significant decrease in adipocytes confirmed not only that 

Atp10c expression was reduced in differentiated cells, but also that these PPARγ agonists 

further down-regulate its expression. 

To clarify and confirm that the decrease in Atp10c was indeed due to the process 

of adipogenesis controlled by PPARγ, Atp10c expression was also assessed in cells 

treated with a PPARγ antagonist, GW9662 [156].  Atp10c expression in adipocytes 

treated with GW9662 alone did not decrease and was similar to that in control cells 

treated with the vehicle DMSO (Figure 13).  However, when GW9662 was added to the 

cells along with MCC555 or TGZ, there was only a 2-fold or a 4-fold decrease in Atp10c 

expression, respectively.  This suggests that GW9662 inhibited adipogenesis and rescued 

some of the decrease in Atp10c expression due to MCC555 or TGZ alone.   

Atp10c and PPARγ mRNAs are oppositely regulated in 3T3-L1 cells during  

adipogenesis 

 Both MCC555 and TGZ are PPARγ agonists that decrease Atp10c expression 

along with anti-diabetic drugs that are members of the thiazolidinedione class.  Due to the 

fact that TGZ was withdrawn from the market because of adverse side effects while  
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Figure 13: Atp10c mRNA expression is regulated by PPARγ agonists and 
antagonists. 
RT-PCR analysis shows Atp10c expression in 3T3-L1 adipocytes harvested between days 
8−10 of differentiation.  MCC555, troglitazone (TGZ), and GW9662 were added to the 
media throughout the differentiation process and replenished whenever the media was 
changed.  Expression of Atp10c mRNA in adipocytes treated with DMSO (CONTROL), 
MCC555, TGZ, and/or GW9662 is shown, with β-actin serving as an internal control.  
The expression of Atp10c is denoted as arbitrary units (A.U.) and represented as the fold 
change normalized to β-actin.  ORO staining was used to monitor morphological changes 
in adipocytes in the presence of PPARγ agonists and antagonists.  *P<0.05, ***P<0.001. 
 

 

50 



www.manaraa.com

 

51 

MCC555 is a newer experimental drug, the following experiments examined the effect of 

MCC555 only.   

Atp10c expression was compared to that of PPARγ in cells treated with MCC555, 

GW9662, a combination of MCC555 and GW9662.  Cells were harvested at days 3, 4, 5, 

and 9 post-induction to gain further insight into the transcriptional control of Atp10c 

during adipogenesis (Figure 14).  In the control cells, high levels of Atp10c were 

expressed at day 3 that gradually decreased through days 4−9 (Figure 14A).  When >80% 

of preadipocytes were differentiated into adipocytes at day 9, Atp10c expression was 2-

fold down-regulated, supporting the earlier results.  Cells treated with the PPARγ agonist 

and/or antagonist showed a similar pattern of decreased Atp10c expression.  However, 

treatment with MCC555 showed even lower Atp10c levels throughout differentiation 

compared to control cells; some of this decrease was rescued by the combination of 

GW9662 with MCC555, confirming the earlier results.  As expected, PPARγ expression 

increased significantly through days 3−9 (Figure 14B).  ORO staining was carried out to 

monitor the differentiation process (Figure 15); quantitation confirms increased 

adipogenesis of cells treated with MCC555 compared to control cells treated with DMSO 

(Figure 16). 

Atp10c mRNA is regulated by hormonal inducers 

Since Atp10c was expressed and levels were modulated during the differentiation 

of 3T3-L1 preadipocytes to adipocytes, the regulation of Atp10c mRNA expression by 

effector molecules of glucose and fat metabolism in undifferentiated and differentiated 

cells was investigated.  This was examined by incubating cells with 100 nM insulin, 100  



www.manaraa.com

 

 

Figure 14: Atp10c and PPARγ  mRNAs are oppositely regulated in 3T3-L1 cells 
during adipogenesis. 
RT-PCR analysis was used to determine Atp10c (A) and PPARγ (B) mRNA expression in 
3T3-L1 cells at days 3, 4, 6, and 9 post-induction; β-actin served as an internal control.  
Cells were treated throughout differentiation with the vehicle DMSO, MCC555, and/or 
GW9662.  Expression of Atp10c and PPARγ mRNA is denoted as arbitrary units (A.U.) 
and represented as the fold change normalized to β-actin.  *P<0.05, **P<0.01, 
***P<0.001. 
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Figure 15: ORO staining shows morphological changes during adipogenesis in 3T3-
L1 cells following treatment with PPARγ agonists and antagonists. 
ORO staining was used to assess the morphological changes in 3T3-L1 cells at days 3, 4, 
6, and 9 post-induction.  Cells were treated throughout differentiation with the vehicle 
DMSO, MCC555, or a combination of MCC555 and GW9662. 
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Figure 16: ORO quantitation confirms adipogenesis in 3T3-L1 cells following 
treatment with PPARγ agonists and antagonists. 
ORO quantitation was used to determine the extent of adipose conversion in 3T3-L1 cells 
at days 3, 4, 6, and 9 post-induction.  Cells were treated throughout differentiation with 
the vehicle DMSO, MCC555, and/or GW9662.  On the specified days, cells were treated 
with ORO, which stains only the fat cells.  The total ORO stain taken up by the cells was 
eluted with 100% isopropanol and the OD measured at 540 nm.  Expression of ORO is 
denoted as arbitrary units (A.U.) and represented as the fold change of the PPARγ agonist 
or antagonist normalized to DMSO.  *P<0.05, **P<0.01. 
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nM dexamethasone, or 100 nM isoproterenol for 24 h.  Atp10c mRNA increased 4-fold or 

6-fold, respectively, when insulin or dexamethasone was added to 3T3-L1 adipocytes 

(Figure 17A); there was no significant change in preadipocytes.  As expected, resistin 

mRNA decreased following treatment with insulin or dexamethasone (Figure 17B).   

Atp10c mRNA expression slightly decreased after incubating the cells with 100 

nM isoproterenol, but this was not statistically significant (data not shown).  The 

regulation of Atp10c mRNA expression by 100 nM insulin or 100 nM dexamethasone 

was also investigated in primary preadipocytes differentiated in culture.  Atp10c mRNA 

slightly increased 1.5-fold or 1.4-fold, respectively, when insulin or dexamethasone was 

added to differentiated primary adipocytes (Figure 18).  Based on these results, the up-

regulation of Atp10c observed in primary adipocytes differentiated in culture (Figure 9B) 

was most likely due to the high insulin that is used in the differentiation media, which is 

10-fold higher than this treatment with insulin.     

Atp10c mRNA and protein are knocked down in 3T3-L1 preadipocytes using 

siRNA 

 Small interfering RNA (siRNA) can be used to knockdown the expression of a 

specific target gene and protein for further studies.  Using two synthetic siRNAs, the 

knockdown of Atp10c mRNA was standardized in 3T3-L1 preadipocytes at different time 

points (Figure 19).  Transient transfection with 200 nM of 5′ Atp10c siRNA using 

HiPerfect transfection reagent showed the most consistent decrease in Atp10c expression, 

with 87%, 80%, and 93% knockdown at 24, 48, and 72 h, respectively.  Transfection of 

3T3-L1 preadipocytes also showed knockdown at the protein level, with 25% and 28% 

decrease in Atp10c expression at 48 and 72 h, respectively (Figure 20).  
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Figure 17: Atp10c mRNA expression is regulated conversely to that of resistin 
mRNA in 3T3-L1 adipocytes following treatment with hormonal factors. 
RT-PCR analysis was used to determine Atp10c (A) and resistin (B) mRNA expression 
in untreated 3T3-L1 adipocytes (CON), and following treatment with 100 nM insulin 
(INS) or 100 nM dexamethasone (DEX) for 24 h.  β-actin is used as an internal control.  
Expression of Atp10c and resistin mRNA is denoted as arbitrary units (A.U.) and 
represented as the fold change normalized to β-actin.  ***P<0.001.
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Figure 18: Atp10c mRNA expression is regulated in primary adipocytes following 
treatment with hormonal factors. 
RT-PCR analysis was used to determine Atp10c mRNA expression in primary adipocytes 
differentiated in culture from control mice.  Primary adipocytes were untreated (CON), or 
treated with 100 nM insulin (INS) or 100 nM dexamethasone (DEX) for 24 hours.  β-
actin is used as an internal control.  Expression of Atp10c mRNA is denoted as arbitrary 
units (A.U.) and represented as the fold change normalized to β-actin.  *P<0.05. 
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Figure 19: Standardization of Atp10c mRNA knockdown in 3T3-L1 preadipocytes 
using siRNA. 
RT-PCR analysis was used to determine Atp10c mRNA expression in 3T3-L1 
preadipocytes treated with 100 nM, 200 nM, 300 nM, 400 nM, or 500 nM of 5′ or 3′ 
Atp10c siRNA for 24, 48, or 72 h.  β-actin is used as an internal control.  Not all 
concentrations or times were tested (indicated by ζ).  Expression of Atp10c mRNA is 
denoted as arbitrary units (A.U.) and represented as the fold change normalized to β-
actin.   
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Figure 20: ATP10C protein is knocked down in 3T3-L1 preadipocytes using siRNA. 
Western blotting was used to determine ATP10C protein expression in 3T3-L1 
preadipocytes treated with 200 nM of 5′ ATP10C siRNA for 24, 48, or 72 h; β-
TUBULIN is used as an internal control.  Expression of ATP10C is denoted as arbitrary 
units (A.U.) and represented as the fold change normalized to β-TUBULIN.  
***P<0.001.   
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Atp10c mRNA and protein are knocked down in 3T3-L1 adipocytes using siRNA 

 After determining that siRNA could be used to knockdown Atp10c/ATP10C 

expression in 3T3-L1 preadipocytes, the effect of siRNA in adipocytes was investigated.  

Adipocytes are generally more difficult to transfect than preadipocytes, however the 

novel “MPG” delivery technology (Panomics) uses virus-derived amphipathic MPG 

peptides that surround the siRNA, diffuse through the lipid bilayer membrane, and 

release the contents inside the cell.  Knockdown of Atp10c mRNA in adipocytes was 

investigated using two concentrations and three time points (Figure 21).  Transient 

transfection with 30 nM of 5′ Atp10c siRNA using DeliverX transfection reagent yielded 

88%, 64%, and 65% knockdown of Atp10c mRNA at 24, 48, and 72 h, respectively.  At 

the protein level, a 38% knockdown of ATP10C was seen at 48 h (Figure 22). 

 The use of siRNA can sometimes lead to off-target effects, where the siRNA 

binds to and decreases expression of a different gene.  In order to determine if the 5′ 

Atp10c siRNA would lead to off-target effects, the expression of additional genes was 

analyzed in 3T3-L1 adipocytes following knockdown of Atp10c (Figure 23).  Decreased 

Atp10c mRNA expression lead to decreased expression in genes involved in adipogenesis 

and/or glucose uptake: CCAAT-enhancer-binding protein α (C/EBPα), glucose 

transporter 4 (GLUT4), and PPARγ.  These results support a role for Atp10c in the 

process of adipogenesis and/or glucose uptake. 

 Atp10c siRNA can be used to transiently knockdown Atp10c/ATP10C expression 

in 3T3-L1 preadipocytes or adipocytes as well as to transiently knockdown 

Atp10c/ATP10C expression in 3T3-L1 cells throughout adipogenesis (Figure 24). 
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Figure 21: Standardization of Atp10c mRNA knockdown in 3T3-L1 adipocytes 
using siRNA. 
RT-PCR analysis was used to determine Atp10c mRNA expression in 3T3-L1 adipocytes 
treated with 15 nM or 30 nM of 5′ Atp10c siRNA for 24, 48, or 72 h.  β-actin is used as 
an internal control.  Expression of Atp10c mRNA is denoted as arbitrary units (A.U.) and 
represented as the fold change normalized to β-actin.   
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Figure 22: ATP10C protein is knocked down in 3T3-L1 adipocytes using siRNA. 
Western blotting was used to determine ATP10C protein expression in 3T3-L1 
adipocytes treated with 30 nM of 5′ ATP10C siRNA for 24, 48, or 72 h; β-TUBULIN is 
used as an internal control.  Expression of ATP10C is denoted as arbitrary units (A.U.) 
and represented as the fold change normalized to β-TUBULIN.  *P<0.05, **P<0.01.   
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Figure 23: Expression of additional genes in 3T3-L1 adipocytes following Atp10c 
mRNA knockdown using siRNA. 
RT-PCR analysis was used to determine mRNA expression of ap2, PPARγ, GLUT4, and 
C/EBPα in 3T3-L1 adipocytes treated with 30 nM of 5′ Atp10c siRNA for 24 h.  β-actin 
is used as an internal control.  Expression of each gene is denoted as arbitrary units 
(A.U.) and represented as the fold change normalized to β-actin.  *P<0.01, ***P<0.001.     
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Figure 24: Atp10c mRNA expression is knocked down throughout differentiation 
using siRNA. 
RT-PCR analysis was used to determine Atp10c mRNA expression in 3T3-L1 cells 
collected at days 0, 3, 4, and 7 post-induction treated with 5′ Atp10c siRNA, which was 
added every time the media was changed.  β-actin is used as an internal control.  
Expression of Atp10c is denoted as arbitrary units (A.U.) and represented as the fold 
change normalized to β-actin.  ***P<0.001.   
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Atp10c siRNA can be used to knockdown gene expression in primary cultures 

 After confirming that siRNA could be used to transiently knockdown Atp10c in 

3T3-L1 cells, the effect of siRNA in primary preadipocytes differentiated in culture was 

monitored (Figure 25).  In primary preadipocytes, 200 nM of 5′ Atp10c siRNA showed a 

94% and 91% knockdown after 24 and 48 h, respectively.  In primary adipocytes, 30 nM 

of 5′ Atp10c siRNA showed a 51% knockdown after 24 h.  

Glucose uptake is increased following knockdown of Atp10c/ATP10C with siRNA 

 The last part of the insulin signaling pathway after insulin binds to the insulin 

receptor is the uptake of glucose into the cell mediated by GLUT4.  In order to study the 

effect of decreased Atp10c/ATP10C on glucose uptake in 3T3-L1 cells, the process was 

first standardized (Figure 26).  Treatment of cells with 100 nM insulin for 30 min showed 

a 3-fold increase in glucose uptake compared to untreated cells.  Glucose uptake was next 

measured in 3T3-L1 adipocytes following knockdown of Atp10c/ATP10C with siRNA.  

There was a 4-fold or 10-fold increase in glucose uptake of transfected adipocytes 

compared to control adipocytes after 24 or 48 h, respectively (Figure 27). 

Subcellular fractionation of 3T3-L1 cells can be used to localize ATP10C protein 

 Following treatment with insulin, the movement of ATP10C between cellular 

fractions can be investigated to elucidate a potential role of ATP10C in the insulin 

signaling pathway.  Subcellular fractionation of 3T3-L1 preadipocytes and adipocytes 

was performed (Figure 28).  Following standardization of the fractionation procedure, 

cells were treated with or without insulin to localize the ATP10C protein (Figures 29, 

30).  The concentration of Na+K+-ATPase, which remains the same in the plasma  
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Figure 25: Primary cultures treated with Atp10c siRNA show a knockdown in 
mRNA levels. 
RT-PCR analysis was used to determine Atp10c mRNA expression in primary 
preadipocytes (A) and adipocytes (B) collected from mouse tissue, plated, and 
differentiated in culture.  Cells were treated with 5′ Atp10c siRNA for 24 h.  β-actin is 
used as an internal control.  Expression of Atp10c is denoted as arbitrary units (A.U.) and 
represented as the fold change normalized to β-actin.  *P<0.01, **P<0.05.  
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Figure 26: Standardization of glucose uptake in 3T3-L1 adipocytes. 
Glucose uptake was used to determine the amount of 2-deoxyglucose incorporated into 
3T3-L1 adipocytes.  Standardization of concentration and time for insulin stimulation 
was performed.  Glucose uptake is denoted as the fold change of glucose uptake with 
insulin stimulation normalized to basal glucose uptake (without the addition of insulin).   
*P<0.01, **P<0.05, ***P<0.001.   
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Figure 27: Treatment of 3T3-L1 adipocytes with Atp10c siRNA increases glucose 
uptake. 
3T3-L1 adipocytes were treated with 30 nM of 5′ Atp10c siRNA for 24 h or 48 h; glucose 
uptake was used to determine the amount of 2-deoxyglucose incorporated into the 
adipocytes.  Glucose uptake in transfected cells is denoted as the fold change of glucose 
uptake normalized to glucose uptake in control cells.  ***P<0.001.   
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Figure 28: Subcellular fractionation of 3T3-L1 preadipocytes and adipocytes. 
Western blotting was used to determine ATP10C and GLUT1 protein expression in 3T3-
L1 preadipocytes (A) and adipocytes (B) fractionated into whole cell lysate (WCL), high 
density microsomal (HDM), low density microsomal (LDM), mitochondrial nuclear 
(MN), and plasma membrane (PM) fractions.    

 

 

 

 

 

 

 

69 



www.manaraa.com

 

 

Figure 29: Subcellular fractionation of 3T3-L1 adipocytes treated with insulin. 
Western blotting was used to determine ATP10C, Na+K+-ATPase, and GLUT4 protein 
expression in 3T3-L1 adipocytes treated without (A) or with (B) 1 µM insulin for 30 min.  
Proteins were fractioned into whole cell lysate (WCL), high density microsomal (HDM), 
low density microsomal (LDM), mitochondrial nuclear (MN), and plasma membrane 
(PM) fractions.    
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Figure 30: A second subcellular fractionation of 3T3-L1 adipocytes treated with 
insulin. 
Western blotting was used to determine ATP10C and GLUT4 protein expression in 3T3-
L1 adipocytes treated without (A) or with (B) 1 µM insulin for 30 min.  Proteins were 
fractioned into whole cell lysate (WCL), high density microsomal (HDM), low density 
microsomal (LDM), and plasma membrane (PM) fractions.    
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membrane, and GLUT4, which increases in the plasma membrane, both serve as internal 

controls.         

 

Discussion  

Atp10c is a type IV P-type ATPase located on mouse chromosome 7.  

Heterozygous mice inheriting a maternal deletion of the Atp10c gene become obese and 

exhibit hyperinsulinemia, hyperlipidemia, and hyperglycemia traditionally associated 

with T2DM [8, 66, 141].  In the study of metabolic diseases, the ability to distinguish 

between primary and secondary effects is a major problem.  Given that Atp10c 

heterozygotes are obese and exhibit these metabolic abnormalities, it becomes difficult to 

understand if changes in glucose and lipid metabolism directly arise from alterations in 

ATP10C activity or if they are due to secondary complications.  Therefore, the present 

study was initiated to define the functional importance of Atp10c in a cell.  A cell system 

expressing Atp10c must first be established in order to use this system to identify factors 

modulating Atp10c expression and elucidate a biological role for Atp10c/ATP10C in the 

process of adipogenesis and the insulin signaling pathway.   

The commercially available Swiss murine 3T3-L1 cell line [10] was used as an in 

vitro model while primary preadipocytes isolated from mouse adipose tissue and 

differentiated in culture were used as an ex vivo model.  In order to use these systems in 

this project, the presence of Atp10c needed to first be demonstrated.  The expression of 

Atp10c mRNA was shown in both the undifferentiated and differentiated adipocytes in 

vitro (Figure 8) and ex vivo (Figure 9).  Quantitative analysis showed that Atp10c mRNA 

is 2-fold down-regulated in 3T3-L1 adipocytes during differentiation (Figure 8).  This 
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decrease in expression was also seen in primary preadipocytes and adipocytes isolated 

from mouse adipose tissue (Figure 9A).  However, Atp10c expression was slightly up-

regulated in primary adipocytes differentiated in culture (Figure 9B).  The addition of 100 

nM insulin to primary adipocytes also slightly increased Atp10c expression (Figure 18).  

Thus, the up-regulation in primary adipocytes differentiated in culture is most likely due 

to the higher concentration of insulin present in the differentiation media that is only used 

for primary cultures.  It has been previously shown that insulin is may increase or 

decrease expression of a number of mRNAs coding for obesity and diabetes genes [157, 

158].  In this study, it may stimulate up-regulation of Atp10c in primary adipocytes by 

increasing the turnover rate or the stability of Atp10c mRNA.     

The down-regulation of Atp10c is opposite to that observed for resistin and 

PPARγ (Figures 8, 14), which are key molecules involved in the regulation of 

adipogenesis.  This decrease during differentiation is also seen with preadipocyte factor-

1, or pref-1, a member of the epidermal growth factor (EGF)-like family of proteins 

[159].  Similar to Atp10c, Pref-1 is highly expressed in undifferentiated cells and down-

regulated during differentiation, serving as an excellent marker for preadipocytes.  The 

DNA sequence element involved in this differentiation-dependent down-regulation has 

already been identified and the protein binding characterized [160].  Due to the fact that 

Atp10c shows a differentiation-dependent expression pattern similar to pref-1, further 

research on Atp10c may elucidate a complementary role as a negative regulator of 

adipogenesis.   

Upon confirmation of the decrease in Atp10c mRNA expression during 

differentiation in these cell systems, the next step was to characterize the protein 
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expression of ATP10C.  Based on the molecular weight, a protein band at 169 kDa was 

expected in Western blotting; a band at this size was faint or unseen with the first sample 

loading buffer used.  After testing multiple sample loading buffers with or without a 

reducing agent (Figure 10), protein bands in the high molecular weight range of 140 kDa 

and the low molecular weight range of 70 kDa were apparent with certain sample loading 

buffers.  Due to the fact that neither of these bands was the expected molecular weight of 

ATP10C, a peptide neutralization experiment was performed (Figure 11).  This 

demonstrated that the actual band for ATP10C using the antibody generated against the 

15 amino acid peptide located between transmembrane helices four and five on the 

cytoplasmic loop is 70 kDa. 

Although Atp10c mRNA decreased during differentiation, ATP10C protein was 

shown to increase (Figure 12).  This was an unexpected result because traditionally the 

transcribed mRNA is translated into an amino acid polypeptide chain that codes for a 

protein; as mRNA levels increase, protein levels would also be expected to increase.  

There are multiple potential correlations between the molecular weight discrepancy and 

the opposite pattern of Atp10c mRNA and ATP10C protein expression.   

DNA contains genes that code for a unique protein.  Protein synthesis begins 

when the sequence of DNA is transcribed into mRNA in the nucleus of a cell.  The 

mRNA is processed and then moves out into the cytoplasm, where it is translated into a 

polypeptide chain that codes for a specific protein with the use of ribosomes located on 

the endoplasmic reticulum (ER).   

Since ATP10C is located in the ER once it is synthesized before transportation to 

another part of the cell, one reason for a lower molecular weight band may be due to 
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endoplasmic reticulum-associated protein degradation (ERAD).  Conditions that interfere 

with the normal functioning of the ER are collectively known as ER stress [161].  One 

response to ER stress is the degradation of misfolded or unassembled proteins by ERAD 

[162].  This degradation may result in the production of a smaller protein, potentially 

explaining the 70 kDa ATP10C band when it was expected to be 169 kDa.  ER stress has 

been shown to not only be related to numerous monogenic diseases [163], but also to the 

more complex diseases of obesity [164]  and T2DM [161, 165].  Özcan et al and others 

have identified ER stress as a molecular link between obesity, decreased action of insulin, 

and the development of T2DM [164, 166].  Using cell culture and mouse models, it has 

been shown that obesity causes ER stress, which may correlate to the increased 

production of the 70 kDa ATP10C protein during differentiation.  As the 3T3-L1 cells 

become adipogenic, there may be an increase in the degree of ER stress, which leads to 

ERAD and an increased production of the 70 kDa degraded ATP10C protein. 

If the ATP10C protein is not misfolded or unassembled in the ER to be targeted 

for ERAD, a molecular chaperone should transport ATP10C from the ER to the plasma 

membrane.  However, a defect in the molecular chaperone would keep ATP10C in the 

ER, allowing it to be targeted for ERAD as described above.  Leptin is a hormone 

secreted in adipocytes that has been shown to modulate the secretion of the 

proinflammatory cytokine interferon-γ (IFN-γ).  Research in the Pacifico laboratory 

found that there is an increased production of IFN-γ in obese children [167].  Combining 

this discovery with research concluding that IFN-γ induces severe ER stress through the 

inhibition of molecular chaperones [165], ATP10C may still remain in the ER after 

protein folding due to a defect in the molecular chaperone.  The increased ER stress 
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caused by adipogenesis would again degrade the ATP10C protein remaining in the ER, 

producing the smaller 70 kDa form.              

Lastly, a post-translational modification of ATP10C may cleave the protein, 

resulting in multiple fragments.  The antibody used in these experiments may only be 

recognizing the N terminal portion of the cleaved protein.  The difference in the expected 

versus resulting protein size may be related to the antibody, which was generated against 

a small region of the peptide.  In order to prove or disprove that the protein is actually 70 

kDa, it will be necessary to generate a new ATP10C antibody against a different region 

of the peptide.   

The process of adipocyte differentiation is associated with a large number of cis-

and trans-acting factors [106, 168, 169].  The regulation of different genes at distinct 

times after the exposure of cells to differentiation conditions suggests the existence of a 

regulatory hierarchy or cascade of events [110, 170].  PPARγ is considered to be the 

master regulator of adipogenesis [110] and controls the expression of adipocyte genes.  

After investigating the effect of the anti-diabetic drugs MCC555 and TGZ [109, 130] on 

Atp10c expression, it was shown that these PPARγ agonists promoted adipogenesis and 

further decreased Atp10c expression (Figure 13).  Adipocytes treated with the PPARγ 

antagonist GW9662 [156] alone showed Atp10c expression similar to that in control cells 

treated with the vehicle DMSO.  However, the combination of the PPARγ agonist and 

antagonist demonstrated that GW9662 was capable of rescuing some of the decrease in 

Atp10c expression due to MCC555 or TGZ alone.   

Because both MCC555 and TGZ are anti-diabetic drugs and PPARγ agonists that 

decreased Atp10c expression, the next experiment to gain further insight into the 
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transcriptional control of Atp10c during adipogenesis used only MCC555 (Figure 14).  

Confirming that Atp10c is down-regulated in adipogenesis, high levels of Atp10c were 

expressed at day 3 that gradually decreased throughout differentiation as opposed to the 

low levels of PPARγ expression that gradually increased throughout differentiation.  

Cells treated with MCC555 and/or GW9662 showed a similar pattern of decreased 

Atp10c expression and increased PPARγ expression.  This opposite regulation of Atp10c 

and PPARγ suggests a potential role for Atp10c as a PPARγ modulator.      

MCC555 and TGZ are members of the thiazolidinedione (TZD) class of drugs 

used to treat and manage T2DM through the improvement of insulin sensitivity [115].  

These PPARγ agonists act to increase transcription of PPARγ, which then binds to a 

peroxisome proliferator hormone responsive element (PPRE) usually located in the 

promoter region in order to increase or decrease gene expression.  MCC555 and TGZ 

both decreased Atp10c gene expression while increasing adipocyte differentiation, similar 

to the inhibition of leptin gene expression in 3T3-L1 adipocytes following treatment with 

TZDs [117].  This is interesting because TZDs are known to increase adipogenesis and 

leptin is predominantly expressed in fat cells.  These results suggest that the negative 

regulation of leptin by TZDs may indicate that these compounds induce a state of 

adipocyte differentiation that is subtly different from that induced by the differentiation 

cocktail.   

 Due to the fact that Atp10c was expressed and levels were modulated during the 

differentiation of 3T3-L1 preadipocytes to adipocytes, the regulation of Atp10c mRNA 

expression by effector molecules of glucose and fat metabolism in undifferentiated and 

differentiated cells was next investigated using the hormonal factors insulin, 
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dexamethasone, and isoproterenol.  Although there was no significant change in Atp10c 

expression in 3T3-L1 or primary preadipocytes, Atp10c mRNA increased in 3T3-L1 

(Figure 17) or primary (Figure 18) adipocytes when treated with insulin or the 

glucocorticoid dexamethasone.  There was a slight decrease in expression following 

treatment with the β-adrenergic receptor isoproterenol, although this was not statistically 

significant.  These results suggest transcriptional control of Atp10c expression by 

hormonal factors during differentiation.  Insulin is already known to positively or 

negatively regulate a number of mRNAs coding for obesity and diabetes genes [157, 

158].  In this study, it may stimulate Atp10c production in 3T3-L1 adipocytes by 

increasing the turnover rate or the stability of Atp10c mRNA.  Dexamethasone induces 

insulin resistance and stimulates Atp10c production, which is similar to its effect on 

resistin and ob gene expression and leptin production [171].  In contrast, the lack of a 

significant effect by isoproterenol suggests that Atp10c expression is not controlled by 

adrenoreceptors (β-adrenergic factors) in 3T3-L1 adipocytes [172]. 

 Signaling through the insulin pathway is critical for the regulation of intracellular 

and blood glucose levels and the avoidance of diabetes.  Insulin binds to its receptor 

leading to the autophosphorylation of the β-subunits and the tyrosine phosphorylation of 

insulin receptor substrates (IRS-1, 2, 3).  IRS phosphorylates the SH2 domain of the 

tyrosine phosphatase Shp2 and the SH3 domain of the adaptor molecule Grb2.  Activated 

Grb2 recruits Sos1 that, in turn, activates the Ras signaling pathway and gene 

transcription.  IRS also activates phosphoinositide 3-kinase (PI3K) through its SH2 

domain, thus increasing the intracellular concentration of PIP2 and PIP.  This, in turn, 

activates phosphatidylinositol phosphate-dependent kinase-1 (PDK-1), that subsequently 
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activates a serine-threonine protein kinase Akt/PKB resulting in the translocation of the 

glucose transporter (GLUT4) from cytoplasmic vesicles to the cell membrane.  In all 

types of obesity and diabetes, the major abnormality lies in the glucose uptake system 

[93, 96, 97, 173].   

With the recent advent of siRNA technology, RNAi-based gene silencing in 

cultured 3T3-L1 adipocytes has proven to be valuable in examining elements crucial for 

the insulin signaling pathway leading to translocation of glucose transporter 4 (GLUT4) 

to the plasma membrane and for adipocyte differentiation [135-137].  Gene silencing in 

cultured mammalian cells is being used as an effective way to quickly screen the 

requirement of a specific gene for a biological function.  In order to investigate the 

biological role of Atp10c/ATP10C in the insulin signaling pathway, gene and protein 

levels were silenced using siRNA technology.  Knockdown of Atp10c/ATP10C was first 

standardized in both 3T3-L1 preadipocytes (Figures 19, 20) and adipocytes (Figures 21, 

22) and shown to be knocked down throughout differentiation (Figure 24) that also 

affected several key factors of adipogenesis (Figure 23).  Then, glucose uptake was used 

to investigate a biological role for ATP10C in the insulin signaling pathway.  When 

ATP10C was silenced, glucose uptake increased (Figure 27).  This also supports the 

MCC555 and TGZ data because TZDs are anti-diabetic drugs that improve insulin 

sensitivity by increasing the uptake of glucose, and they also decreased the expression of 

Atp10c.  Similarly, when Atp10c/ATP10C was decreased with siRNA, glucose uptake 

was significantly increased.  Knockdown of PPARγ has been shown to attenuate glucose 

uptake in 3T3-L1 adipocytes [113], again corroborating the opposing regulation of 

Atp10c and PPARγ.  Park et al [174] demonstrated analogous findings to the Atp10c data 
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using cilostazol, which stimulated transcriptional activity of PPARγ in human umbilical 

vein endothelial cells and increased glucose uptake.   

The in vitro glucose uptake results using 3T3-L1 adipocytes are opposite of those 

in the whole animal model [141], where knockdown of ATP10C in the heterozygous 

mutant mice led to decreased glucose uptake.  This demonstrates the difficulty in 

understanding if changes in glucose and lipid metabolism in a whole animal model 

directly arise from alterations in ATP10C activity or if they are due to secondary 

complications.     

To further investigate the cellular localization of ATP10C with and without 

insulin stimulation, subcellular fractionation of 3T3-L1 preadipocytes and adipocytes was 

performed (Figure 28).  Following stimulation with insulin, it appeared that ATP10C 

expression increased in the plasma membrane (Figures 29, 30).  However, it becomes 

difficult to interpret these results due to cross-contamination between fractions.  

Based on these results and the current literature, Atp10c/ATP10C does have a role 

in the insulin signaling pathway and may have a potential role in adipogenesis.       
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CHAPTER 4.  CONCLUSIONS AND FUTURE DIRECTIONS 

The aim of this study was to investigate the biological role of Atp10c/ATP10C, a 

type IV P-type ATPase located on mouse chromosome 7, in the process of adipogenesis 

and the insulin signaling pathway.  Heterozygous mice inheriting a maternal deletion of 

the Atp10c gene become obese and exhibit metabolic abnormalities (hyperinsulinemia, 

hyperlipidemia, and hyperglycemia) traditionally associated with T2DM [8, 66, 141].  

The ability to distinguish between primary and secondary effects is a major problem with 

the use of a whole animal model, making it hard to understand if changes in glucose and 

lipid metabolism directly arise from alterations in ATP10C activity or if they are due to 

secondary complications.  Therefore, the commercially available Swiss murine 3T3-L1 

cell line was used as an in vitro model to study changes in Atp10c/ATP10C expression 

and primary preadipocytes isolated from mouse adipose tissue and differentiated in 

culture were used as an ex vivo model. 

Atp10c mRNA was 2-fold down-regulated during adipogenesis, similar to the 

known inhibitor of adipocyte differentiation, pref-1 [159, 160, 175-180].  This is 

interesting because most of the genes related to obesity are up-regulated during 

adipogenesis [105, 181-183].  Previous research has shown that constitutive expression of 

pref-1 inhibits the process of adipogenesis, suggesting that pref-1 functions as a negative 

regulator of the differentiation process [159].  Due to the fact that Atp10c shows a similar 

differentiation-dependent down-regulation to pref-1, a future experiment with the 

constitutive expression of Atp10c would elucidate its effect on adipogenesis and its role 

in regulating the process of differentiation. 
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Interestingly, ATP10C protein was up-regulated throughout differentiation and 

showed an unexpected protein band at a lower molecular weight of 70 kDa.  This 

discrepancy may be due to endoplasmic reticulum-associated protein degradation 

(ERAD) if the protein is misfolded or unassembled in the ER or if there is a defect in the 

molecular chaperone that would cause ATP10C to remain in the ER and be degraded.  It 

may also be due to a post-translational modification that cleaves the protein so that the 

antibody that was generated against a 15 amino acid peptide sequence between 

transmembrane loops four and five on the N terminus is only recognizing one part of the 

cleaved protein.  To resolve these data, generation of a second antibody against a peptide 

sequence located in a different region on the C terminal end may show the same band at 

70 kDa, supporting ERAD of ATP10.  However, a protein band at a different molecular 

weight would support post-translational protein cleavage. 

PPARγ is considered to be the master regulator of adipogenesis [110], controlling 

the expression of adipocyte genes.  Throughout differentiation, Atp10c and PPARγ 

mRNAs were oppositely regulated, suggesting a potential role for Atp10c as a PPARγ 

modulator.  Treatment of 3T3-L1 cells with the PPARγ agonists MCC555 and TGZ 

demonstrated increased adipogenesis and decreased expression of Atp10c.  These PPARγ 

agonists are also anti-diabetic drugs that act to improve insulin sensitivity in diabetic 

patients by increasing glucose uptake.  Silencing Atp10c/ATP10C with siRNA, similar to 

the decreased expression seen following treatment with the PPARγ agonists, led to 

increased glucose uptake, again supporting the role of Atp10c as a PPARγ modulator.  To 

further investigate this potential function, the silencing of PPARγ in 3T3-L1 cells before, 
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during, and after differentiation followed by the subsequent analysis of its affect on 

Atp10c expression would be beneficial.   

Due to the fact that PPARs bind to PPREs in order to activate or suppress gene 

expression, analysis of the Atp10c gene sequence may also provide valuable evidence of 

the presence a PPRE.  If a PPRE is present, experiments should also be undertaken to 

confirm if the site is functional, similar to the experiments Frohnert et al performed to 

determine the functionality of the murine fatty acid transport protein (FATP) gene PPRE 

[184].   

The knockdown of ATP10C in 3T3-L1 adipocytes led to increased glucose 

uptake, but another experiment to examine its role in glucose uptake would be to silence 

ATP10C expression throughout differentiation to see what would happen if ATP10C was 

completely ablated in preadipocytes.  Glucose uptake involves the translocation of 

GLUT4 from the inner membrane to the outer membrane of a cell in order to take up the 

glucose from the cytosol.  Because ATP10C may have a potential role in this process, 

future work could be to localize the protein in 3T3-L1 cells.  The subcellular 

fractionation experiments showed that ATP10C could be localized and the effect of 

insulin stimulation monitored; however, there was a question of cross-contamination 

between fractions, making it difficult to interpret the results.  Additionally, a tremendous 

number of cells are needed for subcellular fractionation that would render this experiment 

expensive and unfeasible to look at the effect of transient Atp10c knockdown with 

siRNA.  Immunofluorescence microscopy is a technique currently used in research [125, 

185] that represents as a more money-conscious and effective way to localize proteins in 

a cell.   
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Since Atp10c has been successfully knocked down using transient siRNA 

transfection, which did show an effect on the insulin signaling pathway, experiments can 

be undertaken to knockdown Atp10c in the generation of a stable cell line.  This cell line 

could also be used for subcellular fractionation experiments because there is no longer a 

need for the expensive siRNA used in transient transfections.        

All of the work for this project was performed using the mouse embryonic 

fibroblast-adipose like 3T3-L1 cell line or primary preadipocytes isolated from mouse 

adipose tissue and differentiated in culture.  However, insulin resistance is due to a defect 

in both adipose tissue, accounting for 5-10% of the glucose uptake, and skeletal muscle, 

which disposes of the majority of glucose [92, 94, 96, 97, 186, 187].  Dhar et al showed 

that Atp10c expression was significantly down-regulated in Atp10c heterozygous mice 

fed a high-fat diet for 4 and 12 weeks; this decrease was seen only in the soleus muscle 

and not the adipose tissue at the earlier timepoint [141].  Thus, a future direction for this 

project would be to examine changes in Atp10c/ATP10C expression using the mouse 

muscle cell line C2C12 [188, 189].  A second benefit to looking at this cell line is that 

obesity does not cause ER stress in the muscle tissue [164], so this may help support or 

refute ERAD of ATP10C protein due to ER stress caused by increased adiposity.   

In summary, Atp10c and the master regulator of adipogenesis PPARγ are 

oppositely regulated and knockdown of Atp10c/ATP10C increases glucose uptake in 

3T3-L1 adipocytes.  This supports a biological role for Atp10c/ATP10C the insulin 

signaling pathway and a potential role in adipogenesis, although further experimentation 

is necessary to elucidate the exact function.   
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APPENDIX 
 

RNA extraction and purification of primary preadipocytes and adipocytes from 
mouse tissue 
1. Clean homogenizer. 

a. Rinse with clean deionized water, holding beaker underneath to catch drips. 
b. Spray with 70% EtOH, and wipe with KimWipe. 
c. Rinse with DEPC water, holding beaker underneath to catch drips. 
d. Run homogenizer in DEPC water in clean beaker. 
e. Squirt RNase AWAY on KimWipe, and wipe homogenizer. 

2. Weigh tissue into 50 ml tube and add 10 ml of trizol per 1 g of tissue. 
3. Homogenize trizol/tissue mix until there are no remaining clumps, approximately 10 

seconds and immediately place sample in ice. 
4. Repeat steps #1-3 for all samples. 
5. Place samples under hood and leave at room temperature for 10 minutes. 
6. Under hood, add 5 ml of chloroform per 1 g of tissue to each sample. 
7. Vortex samples, place under hood, and leave at room temperature for 5 minutes. 
8. Centrifuge at 3K, 4-10°C, 20 minutes. 
9. Transfer top layer with pipette to 10 ml tube.  If the top layer is “dirty” (contaminated 

by bottom layer), centrifuge again, and repeat step #8. 
10. Under hood, add 5 ml of isopropyl alcohol per 1 g of tissue to each sample. 
11. Vortex, place under hood, and leave at room temperature for 20 minutes. 
12. Centrifuge at 3K, 4-10°C, 20 minutes. 
13. Collect the pellet by dumping the liquid into a separate container without disturbing 

the pellet. 
14. Add 10 ml of 70-75% ethanol alcohol per 1 g of tissue to each sample. 
15. Vortex to disperse the pellet. 
16. Centrifuge at 3K, 4-10°C, 20-60 minutes. 
17. Collect the pellet by dumping the liquid into a separate container without disturbing 

the pellet. 
18. Tilt the tubes until they are approximately upside down, and let the tubes sit under the 

hood for 10 minutes to dry the pellet. 
19. Resuspend pellet in 100 µl of sterile water and transfer to 1.5 ml tube. 
20. Make first mix by combining RLT buffer and 2-mercaptoethanol (3 ml of RLT + 30 

µl of 2-mercaptoethanol is enough for 6 samples).  Vortex mix. 
21. Add 350 µl of first mix to each sample.  Vortex and centrifuge samples. 
22. Add 250 µl of ethanol to each sample.  Vortex and centrifuge samples. 
23. Transfer sample mix into the pink column. 
24. Make sure centrifuge lid is in place, and then centrifuge samples for 15 seconds. 
25. Pull column out.  Dump liquid out of 1.5 ml tube.  Replace column in top of 1.5 ml 

tube. 
26. Add 500 µl of RPE buffer to pink column. 
27. Make sure centrifuge lid is in place, and then centrifuge samples for 15 seconds. 
28. Repeat steps #25-27. 
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29. Pull column out.  Dump liquid out of 1.5 ml tube.  Replace column in top of 1.5 ml 
tube. 

30. Make sure centrifuge lid is in place, and then centrifuge samples for 1 minute. 
31. Move pink column to 1.5 ml tube with ridged edges (pre-labeled). 
32. Add 50 µl of DEPC to center of white material without touching white material. 
33. Make sure centrifuge lid is in place, and then centrifuge samples for 1 minute. 
34. Centrifuge again if significantly less than 50 µl of water is present at bottom of tube. 
35. Toss pink column and keep 1.5 ml tube with elutant.  
36. Quantitate RNA using Biophotometer. 
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RNA extraction and purification of 3T3-L1 cells and primary preadipocytes and 
adipocytes plated and differentiated in culture  
1. Add 400 µl RLT buffer from Qiagen kit for a 60 mm dish (600 µl for a 100 mm dish).  

If making RNA immediately, add β-mercaptoethanol to RLT buffer (1 µl β-
mercaptoethanol per 100 µl RLT buffer).  If collecting RNA samples and storing at -
80°C, do not add β-mercaptoethanol until you are ready to make the RNA. 

2. Scrape cells and transfer to a round bottom tube from Qiagen kit if making RNA 
immediately or transfer to a small Eppendorf tube if storing at -80°C. 

3. Syringe each sample up and down five times using a 20-guage needle. 
4. Add an equal amount of 70% ethanol (400 µl or 600 µl). 
5. Transfer solution to pink column (700 µl at a time) and centrifuge for 20 seconds at 

13K. 
6. Dump liquid out of the bottom tube and add 700 µl RW1 buffer from Qiagen kit to 

the pink column; centrifuge for 20 seconds at 13K. 
7. Dump liquid out of the bottom tube and add 500 µl RPE buffer from Qiagen kit to the 

pink column; centrifuge for 20 seconds at 13K.  Repeat this step again. 
8. Dump liquid out of the bottom tube and centrifuge for 1 minute at 13K. 
9. Move pink column to 1.5 ml tube (pre-labeled) from Qiagen kit.  Add 50 µl RNase-

free water from Qiagen kit to center of white material in column. 
10. Centrifuge samples for 1 minute.   
11. Toss pink column and keep 1.5 ml tube with elutant. 
12. Quantitate RNA using Biophotometer. 
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Isolation and differentiation of primary preadipocytes (PA) and adipocytes (Ad) 
1. Sacrifice mice by CO2 asphyxiation. 
2. Collect adipose tissue from mice. 
3. Mince tissue into small pieces and weigh.  Add approximately 2 g tissue to each 50 

ml Falcon tube.   
4. Add 10ml KRB buffer + 20mg of collagenase (2 mg/ml) to each 2 g of tissue. 
5. Shake at 37ºC, 25′.  If there is still a large amount of floating pieces, continue to 

shake until there are very few pieces.  
6. Filter through 100 µM mesh and rinse with 5ml KRB + collagenase. 
7. Centrifuge at 800rpm (low speed), 10′. 
8. Collect floating Ad using coated pipets, add equal volume HBSS, store on ice 

temporarily. 
9. Add 5 ml FACS buffer to PA/KRB + collagenase tube; centrifuge at 1500rpm, 10′. 
10. Loosen PA pellet by gently flicking the tube, rinse with ~0.5ml HBSS to disperse 

clumps, and treat with 5 ml 1X RBC (red blood cell) lysis buffer (eBioScience). 
11. Leave RBC treated PA at RT, 4′. 
12. Add 5 ml FACS buffer to PA/lysis buffer tube. 
13. Centrifuge PA and Ad at 800rpm (low speed), 10′. 
14. Remove HBSS from the bottom of Ad using coated pipets. 
15. Store Ad at -80ºC for later use. 
16. Remove FACS buffer from PA pellet and wash 1X with new FACS buffer. 
17. Centrifuge PA at 800rpm (low speed), 10′. 
18. Remove FACS buffer from PA pellet. 
19. Count and plate primary preadipocytes (at a density of ~7.5 x 105 cells/well) if using 

in culture or store at -80ºC for later use. 
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Cell Work Medias 
Growth Media (GM) 

 1 L DMEM 
 100 ml 10% FBS 
 10 ml 1% P/S 

 
Differentiation Media (DM) 

 10 ml GM 
 110 µl of 0.5 mM isobutyl-methyl-xanthine (MIX) 

(Sigma I-5879, dissolve 250 mg in 25 ml of 95% ethanol) 
 10 µl of 1µM dexamethasone 

(Sigma D-4902, dissolve 100 mg in 100 ml of 95% ethanol) 
 1 µl of 1 µg/ml insulin 

(Sigma I-9278, 1.7 mM ready to use) 
 10 µl of 10 mM troglitazone (TGZ) 

(Cayman Chemical 71750, dissolve 10 mg in 2.26 ml DMSO) 
 

Maintenance Media (MM) 
 10 ml GM 
 1 µl of 1 µg/ml insulin 
 10 µl of troglitazone (TGZ) 

 
High Insulin Media (HI)  

 10 ml GM 
 10 µl of 1 µg/ml insulin 

 
Thiazolidinediones (TZDs)  

 1 µl of 10 mM MCC555 per 1 ml media 
 1 µl of 10 mM TGZ per 1 ml media  
 1 µl of 10 mM GW9662 per 1 ml media  
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Oil Red O staining  
For all additions and washes, use a volume equal to the volume of media used for 
the dish.  For example, use 2 ml volume for all 60 mm dishes.  

1. Prepare ORO solution by dissolving 0.039 g ORO powder in 5.6 ml of 85% 
propylene glycol.  Warm ORO in water bath (60°C) before use. 

2. Rinse dish twice with HBSS. 
3. Add 1% formalin to well, leave at RT 5′. 
4. Remove formalin (DO NOT discard waste in sink). 
5. Add 85% propylene glycol, leave at RT 5′ two times. 
6. Add ORO, agitate slightly using Belly Dancer on low setting (3-4) at RT, 20′. 
7. Add 85% propylene glycol, leave at RT 3′.   
8. Rinse dish with tap water until there is no more residual ORO rinsed off (2-5 times). 
9. Add hematoxycin counterstain, leave at RT 30 sec. 
10. Rinse dish with tap water until there is no more/minimal hematoxycin counterstain 

rinsed off (2-5 times). 
11. Photograph dish. 
 
Oil Red O staining for Quantification  

Reagents 
ORO stock  

 0.7 g ORO  
200 ml Isopropanol  

 Stir overnight, then filter with 0.2 µm and store at 4°C  
ORO Working Solution  

 6 parts ORO stock  
4 parts dH2O 

 Mix and let sit at RT, 20′, then filter with 0.2 µm  
  

1. Remove most of the medium and wash once with 1X PBS. 
2. Add 10% formalin and incubate at RT, 5′. 
3. Discard formalin and add the same volume of fresh formalin.  
4. Incubate 1 h or longer at RT.  
5. Wash wells with 60% isopropanol.  
6. Let the wells dry completely for 5′.  
7. Add ORO working solution for 20′ (do not touch walls of the wells) (on the belly 

dancer).  
8. Remove all ORO and IMMEDIATELY add dH2O; wash with H2O four times. 
9. Photograph dish if desired. 
10. Remove all water and let dry at 37° for 10′. 
11. Elute ORO by adding 100% isopropanol; incubate about 15′ (can be longer).  
12. Pipet the isopropanol with ORO up and down several times to be sure that all 

ORO is in the solution.  
13. Measure OD at 540 nm.  Read 200 µl in a 96 well plate.  
14. Use 100% isopropanol as a blank and isopropanol from an empty well stained as 

previously described as a control.  
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siRNA Transfections  
Preadipocytes 

Cells were transfected with 200 nM of Atp10c siRNA. 
1. Combine equal volumes of 20 µM Atp10c siRNA and HiPerfect transfection reagent 

(40 µl total volume is required per dish). 
2. Flick tube to mix and leave at RT for 10′. 
3. Add 40 µl of the transfection complex to the medium of each cell culture dish by 

gently pipetting into the medium. 
4. Gently swirl dishes to disperse the transfection complex.   
5. Incubate under standard cell culture conditions. 
6. Transfect cells each time the medium is changed. 
 

Adipocytes 
Cells were transfected with 30 nM of Atp10c siRNA. 

1. Prepare working siRNA transfection complex as follows [145]. 
 

Scale-Up Volumes and 
Sonication Times Step Action 

1X 2X 3X 
1 Prepare 5 µM siRNA working stocks using TE buffer. 

2 
Dilute 5 µM siRNA working stocks with Buffer-1. 
a. Add Buffer-1: 
b. SiRNA: 

 
37 µl 
13 µl 

 
74 µl 
26 µl 

 
111 µl 
39 µl 

3 

Prepare siRNA Transfection Reagent. 
a. Sonicate the siRNA Transfection Reagent: 
b. Mix Buffer-2 with: 
c. siRNA Transfection Reagent: 
d. Vortex and sonicate solution again for: 

 
3-5 min 

42 µl 
8 µl 

3-5 min 

 
3-5 min 

84 µl 
16 µl 

3-5 min 

 
3-5 min 
126 µl 
24 µl 

3-5 min 

4 
Form concentrated siRNA transfection complex: 
a. Combine appropriate tubes from steps 2 and 3. 
b. Briefly vortex and then incubate for 20 min at 37°C. 

5 
Prepare complex dilution buffer. 
a. Mix Buffer-1 with: 
b. Buffer-2: 

 
200 µl 
200 µl 

 
400 µl 
400 µl 

 
500 µl 
500 µl 

6 
Prepare working siRNA transfection complex: 
a. Add complex dilution buffer to prepared concentrated 
siRNA transfection complexes: 

300 µl 600 µl 900 µl 

 
2. Wash cells with 1X PBS (1500 µl/well). 
3. Add working transfection complex (300 µl/well) and incubate at RT, 3-5′. 
4. Add serum-free media (300 µl/well) and incubate under normal cell culture 

conditions for 2-4 h. 
5. Add complete growth medium (1000 µl/well) and incubate under normal cell culture 

conditions for 24-72 h. 
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Semi-quantitative RT-PCR and agarose gel 
Recipes 
 50X TAE buffer 

 242 g tris-BASE 
57.1 ml glacial acetic acid 
100 ml 0.5 M EDTA, pH 8.0 

 fill to 1 L with nanopure water 
 filter solution 

 
 1X TAE buffer 

 20 ml 50X TAE 
 fill to 1 L with nanopure water 

 
1. Prepare 1X cDNA samples using RNA samples and BioRad cDNA kit. 

- RNA (1 µg) 
  sterile H2O (10 µl – volume of RNA used) 
  5X buffer (2 µl) 
  enzyme (0.5 µl) 
- run cDNA samples in PCR machine using Biorad RT program 

2. Prepare RT-PCR primers (P1 + P2). 
- 10 µl forward primer (P1) 
  10 µl reverse primer (P2) 
  80 µl sterile H2O 

3. Prepare RT-PCR samples using cDNA samples. 
- 1 µl cDNA 
  2.5 µl P1 + P2
  9 µl H2O 
  12.5 µl GoGreen Taq Master Mix 

4. Run in PCR machine at 54°C annealing, 30 cycles. 
5. Prepare 1% agarose gel. 

- For a small gel, dissolve 1.25 g agarose in 125 ml fresh 1X TAE buffer.   
- For a large gel, dissolve 3.5 g agarose in 350 ml fresh 1X TAE buffer. 
- Microwave 1-2 min until all of the agarose dissolves. 
- Allow to cool at RT, but do not allow to solidify. 
- Add 2 µl ethidium bromide per 1 g agarose. 
- Pour into taped gel holder and add well combs. 

6. Load RT-PCR samples in 1% agarose gel and run at 75 V for 1 h 15 min for small 
gels or 1 h 45 min for large gels. 
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RT-PCR primer list 
ORN 559 (F): 5′−ATGGGTCAGAAGGACTCCTA−3′ 

β-actin 
ORN 560 (R): 5′−CAACATAGCACAGCTTCTCT−3′ 

520 bp 

ORN 554 (F): 5′−CCTGTGCTCTTCATTCTGGC−3′ 
Atp10c 

ORN 555 (R): 5′−CACTGCAGCTGTGAATCTGT−3′ 
886 bp 

ORN 697 (F): 5′−GACCTGGAAACTCGTCTCCA−3′ 
ap2 

ORN 698 (R): 5′−CATGACACATTCCACCACCA−3′ 
320 bp 

LACS 130 (F): 5′−CAGTTTGGCAAGAATCAGAGCA−3′ 
C/EBPα 

LACS 131 (R): 5′−GGGTGAGTTCATGGAGAATGG−3′ 
391 bp 

LACS 134 (F): 5′−TGGCCCTAAGTATTCAAGTTCTG−3′ 
GLUT4 

LACS 135 (R): 5′−TTCCTTCTATTTGCCGTCCTC−3′ 
168 bp 

LACS 128 (F): 5′−GGTGAAACTCTGGGAGATTC−3′ 
PPARγ 

LACS 129 (R): 5′−CAACCATTGGGTCAGCTCTT−3′ 
268 bp 

LACS 3 (F): 5′−ACTGAGTTGTGTCCTGCTAAG−3′ 
resistin 

LACS 4 (R): 5′−CCACGCTCACTTCCCCGACATC−3′ 
386 bp 
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Protein extract preparations: total membrane proteins 
Reagents 
 PARP buffer 

 50 mM tris, pH 6.8 
8 M urea 
2% SDS 

 
 PARP buffer + protease inhibitors + DTT 

 100 µl PARP buffer 
1 µl of 100X pi 
1 µl of 100 mM DTT 
 

Homogenization buffer 
 2 ml of 1 M HEPES, pH 7.5 (to give 20 mM) 

1 ml of 1 M KCl (to give 10 mM) 
 dilute to 100 ml with nanopure H2O 

 
1. Prepare samples: 

a. For tissues, resuspend 500 mg tissue in 5 ml homogenization buffer plus 50 µl pi 
per sample.  Homogenize with Polytron for 10 sec and pass through 20-gauge 
needle 30X. 

b. For cells, resuspend pellet in 2 ml homogenisation buffer plus 20 µl pi per 
sample.  Homogenize through 20-gauge needle 30X. 

2. Centrifuge at 800 rpm for 10′ at 4°C. 
3. If supernatant is clear, re-pass through needle and centrifuge at 800 rpm. 
4. Transfer supernatant to a new tube and centrifuge at 25000 x g (13000 rpm) for 30′ at 

4°C. 
5. Remove and save supernatant (cytosolic proteins). 
6. Resuspend pellet in 100-300 µl PARP buffer + 1 mM DTT + 1 mM pi. 
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Protein extract preparations: whole cell lysates with SDS lysis buffer 
Reagents 
 SDS lysis buffer 

 2.5 ml of 1 M HEPES (to give 50 mM) 
7.5 ml of 1 M NaCl (to give 150 mM) 
20 ml of 10% SDS (to give 4% SDS) 

 dilute to 50 ml with nanopure H2O 
 

1. Wash cells twice with PBS at RT. 
2. Add 1 ml of SDS lysis buffer with DTT (10 mM) and pi (1:1000). 
3. Isolate cells with cell scraper and collect in eppendorf tube. 
4. Heat to 100°C for 5 min. 
5. Store at -80°C. 
 
 
Protein extract preparations: whole cell lysates with RIPA buffer 

Reagents 
 RIPA buffer + inhibitors 

 1 ml RIPA buffer 
5 µl of 200X Na3VO4
5 µl of 200X NaF 
5 µl of 200X PMSF 
1 µl of leupeptin 
1 µl of aprotinin 

 
1. Wash cells twice with PBS on ice. 
2. Add RIPA buffer + inhibitors (100 µl per 60 mm dish). 
3. Isolate cells with cell scraper and collect in eppendorf tube. 
4. Store at -80°C. 
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Protein extract preparations: subcellular protein fractionations 
Recipes 
 DMEM/BSA 

 add 100 mg BSA to 100 ml DMEM 
 

 HES buffer 
 250 mM sucrose (42.8 g), 20 mM HEPES (2.38 g), 1 mM EDTA (0.15 g) 
 dilute to 100 ml with water 
 pH to 7.4 and store at RT 

  
HES/pi buffer 

 add 1 µl pi for every 1 ml HES buffer 
  

1.12M Sucrose buffer 
 add 29.78 g sucrose to 60 ml HES and stir vigorously 
 dilute to 100 ml with HES and store at room temperature overnight  
 place on ice prior to use 

 
1. serum starve 3T3-L1 cells O/N at 37°C 

- wash cells 1X ⊆ DMEM 
- add 10 ml DMEM/BSA (1 mg/ml) to each dish 

2. remove cells from incubator and bring to benchtop   
3. add DMEM with or without insulin (1 µM = 18 µl insulin in 30 ml DMEM) and 

incubate flasks at 37°, 30′ 
4. wash 1X ⊆ 1 ml HES, RT   
5. add 3 ml HES/pi to each T75 flask (3 flasks for each sample) 
6. scrape 3T3-L1 cells at RT using soft cell scraper 
7. collect cells in 50 ml Falcon tubes 
8. homogenize 10sec ⊆ Polytron followed by syringing ↑ and ↓ ⊆ 20-gauge needle 30X 

≈≈≈≈≈ALL STEPS ON ICE FROM HERE ON OUT≈≈≈≈≈ 
9. transfer homogenate to black cap (11ml) centrifuge tubes on ice 
10. save 300 µl of each as whole cell lysates (WCL) in a 1 ml Eppy tube 
11. centrifuge 12000 rpm, 15′, 4°C in 75Ti rotor  
12. carefully remove fat layer and transfer infranatant to black cap (11 ml) centrifuge 

tubes for further fractionation (~9 ml) – this is the HLC fraction 
13. wipe side walls with Kim wipes to remove excess fat  
14. resuspend pellet in 9 ml cold HES 
15. homogenize ⊆ 20-gauge needle and syringe 5X 
16. centrifuge 12000 rpm, 20′, 4°C in 75Ti rotor  
17. remove supernatant and discard 
18. resuspend pellet in 5 ml HES 
19. homogenize ⊆ 20-gauge needle and syringe 5X 
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20. overlay homogenate on 6 ml of a 1.12M sucrose cushion made up in HES; top up 
tube ⊆ HES  

21. centrifuge 25000 rpm, 60′, 4°C in SW28 swinging rotor  
22. collect cloudy, “fluffy” interface between top buffer and sucrose cushion (~1 ml)  
23. resuspend this interface in 10ml HES in black cap tubes (11 ml) 
24. centrifuge 18000 rpm, 30′, 4°C in 75Ti rotor  
25. during centrifugation, remove remaining sucrose in SW28 tube and rinse pellet with 

HES  
- resuspend this pellet in 2 ml HES/pi, transfer to a 2 ml Eppy tube, and label as 

mitochondrial/nuclear fraction (MN) 
26. after centrifugation, remove supernatant 

- resuspend pellet in 150 µl HES/pi, transfer to a 1 ml Eppy tube, and label as 
plasma membrane (PM) 

27. centrifuge the HLC fraction from earlier 20000 rpm, 30′, 4°C in 75Ti rotor 
- transfer supernatant into another black cap centrifuge tube (11 ml) (for LDM 

fractionation) 
- resuspend pellet in 300 µl HES/pi (HDM) 

28. Centrifuge supernatant at 45000 rpm, 1.5h, 4°C 
- discard supernatant (cytosolic fraction) 
- resuspend pellet in 200 µl HES/pi (LDM) 

29. BCA assay to quantitate proteins 
- 9 standards in duplicate, all samples in duplicate 
- 200 µl mix per well of 50 parts A : 1 part B (1 ml A + 20 µl B) 
- assay: 10 µl standard OR 1 µl sample + 9 µl PBS with 200 µl mix 
- 37°C, 30′ 
- 10 samples + 9 standards = 19 in duplicate = 38 total x 200 µl = 7600 µ,  

8 ml A + 160 µl B 
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LDM fraction 

resuspend in    
200µl HES/pI 

discard 
supernatant 

pellet 

45000rpm, 1.5 h, 4°C 

resuspend in    
300µl HES/pI 

HDM fraction 

PM fraction 

resuspend in    
 150µl HES/pI 

discard 
supernatant 

pellet 

MN fraction 

resuspend in   
 2 ml HES/pI 

“fluffy” 
interface  

resuspend in 10ml HES 
18000rpm, 30′, 4°C 

pellet 

infranatant 
HLC fraction resuspend in 9ml HES 

homogenize 5X 
12000rpm, 20′, 4°C 

20000rpm, 30′, 4°C 

supernatant pellet pellet discard 
supernatant resuspend in 5ml HES 

homogenize 5X 
overlay sucrose cushion 
25000rpm, 60′, 4°C 

pellet 

WCL fraction 
12000rpm, 15′, 4°C 
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Pouring gels for Western blot 
Recipes 
 Solution A 

 40% w/v bis-acrylamide solution 
 
Solution B 

 25 ml 3M tris-HCl, pH 8.8 
23 ml H2O 
2 ml 10% SDS 
 

Solution C 
 25 ml 1M tris-HCl, pH 7.0 

23 ml H2O 
2 ml 10% SDS 
 

10% APS 
 0.5 g ammonium persulfate 

5 ml H2O 
 

1. Set up gel pouring apparatus. 
2. Prepare resolving gel (normally 10%) by combining the ingredients according to the 

table.  This is enough to pour 2 gels.  Add TEMED and APS immediately before 
pouring into the gel apparatus. 

 
 6% 8% 10% 12% 14% 16% 
Solution A (ml) 2.25 3.00 3.75 4.50 5.25 6.00 
Solution B (ml) 3.75 3.75 3.75 3.75 3.75 3.75 
H2O (ml) 9.00 8.25 7.50 6.75 6.00 5.25 
TEMED (µl) 10 5 5 5 5 5 
10% APS (µl) 75 75 75 75 75 75 

 
3. Pour resolving gel into the gel apparatus and top off with a thin layer of isopropyl 

alcohol. 
4. Allow the resolving gel to set/solidify.   
5. Prepare 4% stacking gel by combining 0.60 ml Solution A, 1.50 ml Solution C, 3.96 

ml H2O, 10 µl TEMED, and 40 µl 10% APS.  Add TEMED and APS immediately 
before pouring into the gel apparatus. 

6. Pour off the isopropyl alcohol and add stacking gel.  Immediately put in the well 
combs. 

7. Allow the stacking gel to set/solidify. 
8. Use the same day or store at 4°C wrapped in moist towels and stored in a Tupperware 

container for up to 3 days. 
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Western blot analysis 
Recipes 
 1X Tris-glycine buffer 

 100 ml 10X tris-glycine 
900 ml nanopure water  
 

20X transfer buffer 
 116 g tris-BASE 

58 g glycine 
74 ml 10% SDS 

 fill to 1 L with nanopure water 
 
1X transfer buffer 

 50 ml 20X transfer buffer 
200 ml methanol 
750 ml nanopure water 
 

20X TBS 
 200 ml 1M tris-HCl (pH 8) 
87.66 g NaCl 

 fill to 1 L with nanopure water 
 
1X TBS 

 50 ml 20X TBS 
  750 µl Tween-20 
 fill to 1 L with nanopure water 

 
1% Blocking Solution 

 1 g nonfat milk 
  1 g BSA  
  100 ml 1X TBST

1. Prepare protein samples. 
2. Boil samples for 5′, place on ice briefly, and spin down before loading onto gel. 
3. Run protein gel at 125 V for 1.5 h at RT in 1X tris-glycine buffer. 
4. Run transfer at 100 V for 1 h surrounded with ice in 1X transfer buffer. 
5. Shake membrane in blocking solution for 1 h at RT. 
6. Shake membrane in 1° antibody overnight at 4°C. 
7. Wash membrane: one quick wash followed by three 10 min washes with 1X 

TBST. 
8. Shake membrane with 2° antibody for 1 h at RT. 
9. Wash membrane: one quick wash followed by three 10 min washes with 1X 

TBST. 
10. Develop membrane with ECL Western Blotting Substrate kit, using 

approximately 1 ml substrate per blot (equal volumes detection reagent 1 and 2). 
- Allow membrane to sit 1′. 
- Blot excess substrate on paper towel. 
- Cover membrane with saran wrap. 

11. Develop membrane with X-ray. 
12. Store membrane at 4°C. 
13. To reprobe membranes: 

- Shake membrane in Western stripping solution for 15′ at RT. 
- Shake membrane in 1X TBST for 15′ at RT. 
- Follow protocol above starting at step 6 (1° antibody). 
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Western blot antibodies 
1° Antibody 2° Antibody MW 

ATP10C Sigma 
(purified) 10 µl/10 ml anti-rabbit 5 µl/10 ml 70 kDa 

GLUT1 
Alpha 

Diagnostic 
(GT11-A) 

10 µl/10 ml anti-rabbit 5 µl/10 ml 40-80 kDa 

GLUT4 AbCam 
(ab654) 4 µl/10 ml anti-rabbit 5 µl/10 ml 70 kDa 

Na+-K+ ATPase 
Novus 

Biologicals 
(NB300-146) 

2 µl/10 ml anti-mouse 5 µl/10 ml 112 kDa 

β-TUBULIN Sigma 
(T2200) 6 µl/10 ml anti-rabbit 5 µl/10 ml 55 kDa 
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Glucose uptake 
Recipes 
 Krebs-Ringer HEPES (KRH) buffer 

 121 mM NaCl (7.07 g), 4.9 mM KCl (0.365 g), 1.2 mM MgSO4 (0.144 g), 
0.33 mM CaCl2 (0.048 g), 12 mM HEPES (2.86 g) 

 dilute to 1 L with water 
 pH to 7.4 
 add 25 mM D-glucose (2.25 g) to 500 ml of the buffer for KRH (+) glucose 
 sterile filter both KRH (-) glucose and KRH (+) glucose and store at 4°C 

 
 Digitonin release buffer 

 0.25 M mannitol (22.78 g), 17 mM MOPS (1.78 g), 2.5 mM EDTA (2.5 ml of 
0.5 M EDTA), 0.25 M digitonin (8 mg/ml, 0.4 g) 

 dilute to 500 ml with water and pH to 7.4 
 heat to 98°C to dissolve, leave on benchtop overnight to bring back to room 

temperature  
 

 cold 2-deoxyglucose (2-DOG) 
 add 0.13 g 2-deoxyglucose in 40 ml KRH (-) glucose 
 store at -20°C 

 
 cytochalasin B 

 stock (Sigma C-6762) is 1 mM in 100% ethanol 
 add 5 µl cytochalasin B/1 ml cocktail 

 
cocktail  

# wells KRH (-) 
glucose Cold 2-DOG 3H 2-DOG

10 9.94 ml 50 µl 10 µl 
20 19.88 ml 100 µl 20 µl 
25 24.86 ml 125 µl 25 µl 
30 29.82 ml 150 µl 30 µl 
35 34.80 ml 175 µl 35 µl 
40 39.76 ml 200 µl 40 µl 
45 44.74 ml 225 µl 45 µl 
50 49.70 ml 250 µl 50 µl 

 
1. In the morning, wash cells with DMEM 2X  
2. Serum starve cells 3-5hrs in DMEM only  
3. Set-up 6-well plate as follows: 

 -C -C +C 

-I (1) (2) (3) 

+I (4) (5) (6) 
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4. Add fresh DMEM with or without insulin (100 nM insulin = 0.6 µl and 1 µM 
insulin = 6 µl in 10 ml DMEM) and incubate 37°, 30′  

5. Wash plates twice with 1 ml of KRH (-) glucose at RT   
6. Add 1 ml of "cocktail" with or without cytochalasin B per well  

- “cocktail” without cytochalasin B (-C), 24 wells, 25 ml 
24.85 ml KRH (-) glucose  
+ 125 µl cold 2-DOG  
+ 25 µl 3H 2-DOG  

- “cocktail” with cytochalasin B (+C), 12 wells, 15 ml 
14.9 ml KRH (-) glucose  
+ 75 µl cold 2-DOG  
+ 15 µl 3H 2-DOG 
+ 75 µl cytochalasin B 

7. Incubate at 37° for 5′ exactly 
8. Terminate incorporation by aspirating off cocktail 
9. Wash plate TWICE with 1ml of ice cold KRH (+) glucose 
10. Add 2.2 ml of digitonin release buffer at RT to each plate; incubate 5′ 
11. Scrape cells and transfer to labeled (1-6) 5 ml eppendorf tube 
12. Vortex to break clumps 
13. Add 2 ml of the lysates to a scintillation vial with 10 ml scintillation fluid 
14. Save remaining 200 µl lysate and store at –80° 
15. To another scintillation vial, add 66µl of "cocktail" (without cytochalasin B), 

1934 µl of digitonin release buffer, and 10 ml scintillation fluid (this tells you the 
specific activity) 

16. Count for 5 min in a scintillation counter
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